
A formalization of multi-agent planning
with explicit agent representation

Alessandro Trapasso
Dept. of Computer, Control and Management Engineering

Sapienza University of Rome, Italy
trapasso@diag.uniroma1.it

Sofia Santilli
Dept. of Computer, Control and Management Engineering

Sapienza University of Rome, Italy
sofiasantilli1998@gmail.com

Luca Iocchi
Dept. of Computer, Control and Management Engineering

Sapienza University of Rome, Italy
iocchi@diag.uniroma1.it

Fabio Patrizi
Dept. of Computer, Control and Management Engineering

Sapienza University of Rome, Italy
patrizi@diag.uniroma1.it

ABSTRACT
We present a formalization of multi-agent planning problems in
which agents are explicitly represented. In contrast with previous
formalisations, we discuss the advantages of representing agents
explicitly and show the implementation in the Unified Planning
formalism and some practical examples. The proposed formalism is
equivalent to other models, in particular to Multi Agent Planning
Domain Definition Language (MA-PDDL), and can thus be com-
piled into it and solved by existing multi-agent planning solvers.
Moreover, we present a further extension to define more complex
multi-agent problems with explicit models of other agents.

KEYWORDS
Multi-agent planning, MA-PDDL

ACM Reference Format:
Alessandro Trapasso, Sofia Santilli, Luca Iocchi, and Fabio Patrizi. 2023. A
formalization of multi-agent planning, with explicit agent representation.
In Proceedings of ACM SAC Conference (SAC’23). ACM, New York, NY, USA,
Article 4, 8 pages. https://doi.org/10.1145/3555776.3577753

1 INTRODUCTION
Multi-Agent Planning (MAP) is the planning problem in a domain
where many autonomous agents coexist and act. Two main variants
of MAP can be identified: one where the agents cooperate towards
a common goal while possibly maintaining privacy about certain
information, and another where each agent acts towards its own
(private) goal.

In order to automatically solve MAP problems, a specification
language must be defined, which can be taken as input by a solver.
Obviously, the characteristics such a language needs to feature
depend on the variant of the problem under investigation. In this
paper, we target the established language Multi-agent Planning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC’23, March 27 –March 31, 2023, Tallinn, Estonia
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9517-5/23/03. . . $15.00
https://doi.org/10.1145/3555776.3577753

Domain Definition Language (MA-PDDL) [6], which allows for
modelling both the cooperative and the competitive variants.

Another important distinction in MAP concerns the solution
approach. There are essentially two approach families: centralized
and distributed. In the former, a central planner takes care of syn-
thesizing a single plan which assigns each action to some agents,
in such a way that the execution of the plan allows for reaching
the desired goal(s). With this approach, in order to carry out the
task, the planning engine needs to access the information related
to every agent. Thus, while privacy can be enforced among agents,
private information needs to be shared with the planner. In the
latter approach, agents plan separately, with the aim to either con-
tribute to the achievement of the common goal (in the collaborative
case) or to reach their private goals (in the competitive case). Here,
we deal with the former variant, where agents act collaboratively.

While MA-PDDL is an established formalism to model MAP,
we identified a drawback in the choice of modelling agents as
objects that may introduce semantic confusion and could prevent
extensions to more complex specifications.

This paper presents a formal model forMAP thatmakes the agent
concept explicit and clearly distinguished from objects. Our formal
model is equivalent to othermodels (in particular, toMA-PDDL) and
can thus be compiled in domain and problem specifications used
by existing MAP solvers. However, the advantage of using a formal
model with explicit representation of agents is in the capability of
defining more complex MA problems with explicit models of other
agents.

2 RELATEDWORK
In recent years there has been an increase in research activity by
the planning community in MA cooperative planning. The Inter-
national Planning Competition (ICP) is one of the most important
competitions involving the world of planning and has contributed
to making significant progress in the world of planning. The first
edition took place in 1998, in which Planning Domain Definition
Language (PDDL) [8] became a standard de facto language for
single-agent planning. Subsequent editions of the ICP have contin-
ued to improve the language by introducing new extensions. Until
a few years ago, there was still no de facto standard for determin-
istic MAP. More recently, in the 2015 CoDMAP competition [3],
MA-PDDL [6] has become a standard de facto language for MAP.

https://doi.org/10.1145/3555776.3577753
https://doi.org/10.1145/3555776.3577753

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia Trapasso et al.

All the planners participating in the competition used MA-PDDL
as the input language. Here we use one of such planners, namely
FMAP [11], to solve the MA-PDDL problems generated by our sys-
tem. MA-PDDL is a MA extension of PDDL3.1 [5], can be used for
modelling MAP activity and allows the definition of both factored
and unfactored. In the factored case, each planning agent uses its
planning sub-task, i.e., for each agent, we provide two MA-PDDL
specifications: one with the domain description and one with the
problem description. In the unfactored case, we have a single spec-
ification that defines the domain of all agents and another single
specification that defines the problem of all agents. Compared to
the classic PDDL, there are only two additional aspects: (i) the
agents take part in the planning activity, (ii) predicates, objects and
implicitly actions can be specified as private. Other characteristics
of MA-PDDL remained unchanged with respect to PDDL or have
been adapted to represent MA domains. The agents in MA-PDDL
are objects (or constants) to which it is possible to associate ac-
tions, objectives and (definitions of metrics, and utilities). More
specifically, in MA-PDDL, we can define agent types as objects and
associate such types with actions. Agent instances are constant of
an agent type. The association of actions to agent types is unam-
biguous as objects can only have an associated action schema with
the same name and arity. The :private block is present in both
agent domain predicates and agent problem objects and indicates
which predicates and objects are hidden from other agents. In this
way, only the agent knows its own private predicates and objects.

Although MA-PDDL contains all the necessary features to model
MAP problems, the design choice of considering agent types as
objects allows for defining domains with unclear semantics. For
example, from the definition of the domain types, it is not possible
to distinguish agent types from other objects. When hierarchical
types are used, we can have predicates admitting either an agent
or an object. For example, in the famous MAP domain depot, an
agent type is named place (often confused with the place in which
the agent is), and predicate at is used to denote both the position
of an agent and the position of other objects.

In addition to possible semantic confusion, considering agents
as objects can also bring some inconvenience for plan execution
when binding PDDL symbols to action and predicate implemen-
tations. For example, in a mobile robotic application, a predicate
at referring to the position of the robot in an environment will
likely be implemented by a localization module, while a predicate
at referring to the position of an object in the environment could
be the result of processing images captured with a camera. As these
predicates have completely different meanings and implementa-
tions, it would be desirable to capture the difference in the planning
domain, in such a way that, at execution time, it becomes clear
which implementation each predicate refers to.

Finally, MA-PDDL does not allow to model mental states of
agents and knowledge of one agent about other agents. For this
kind of extensions, explicit models of agents are necessary.

This work aims at highlighting the difference between agents,
which actively operate in the environment, and objects, which
are passive entities. Agents are different from objects and also
from the conceptual and knowledge-representation perspectives.
This distinction between agents and objects becomes even more
marked when considering human-aware planning settings, where

humans, who are definitely not objects, acting in the environments
are modelled as agents with significantly different characteristics
wrt those of other artificial agents.

In this paper, we present a novel formalization of MAP with
explicit agent representation, which is equivalent to MA-PDDL
but allows for clear semantics of the specification of the planning
domains and problems, reducing possible causes of semantic confu-
sion. Such an equivalent formalization allows for compiling MAP
problems into MA-PDDL and for using available MAP solvers.

We also discuss some extensions of this formalization to take
into account agent individual abilities or constraints, mental states,
and knowledge about other agents.

3 MULTI-AGENT MODELLING
In this section, we present the MAP framework with explicit agent
modelling.We stress that the framework is not meant as a newMAP
language but, rather, as a conceptual model to be possibly compiled
into MA-PDDL (or any other expressive-enough language).

3.1 Formalism and problem specification
A planning domain is, as standard, a pair D = ⟨𝐹,𝐴⟩, where 𝐹 is
a set of propositional fluents and 𝐴 a set of actions. A planning
problem is a tuple Π = ⟨D, 𝐼 ,𝐺⟩, where D is a planning domain,
and 𝐼 and 𝐺 , respectively, the initial state and goal description,
expressed as boolean formulas over fluents from 𝐹 .

We assume an environment E modelling the common environ-
ment the agents act in and retaining the information available to all
agents. Such information is formally captured by a set of environ-
ment fluents E .𝐹 . The set of agents acting in E is Λ = {_1, . . . , _𝑛}.
Each agent _𝑖 ∈ Λ has an associated set _𝑖 .𝐹 of agent(-specific)
fluents, which model the state of _𝑖 , and a set of agent(-specific)
actions _𝑖 .𝐴, representing all the actions available to the agent.
Agent-specific fluents can be shared among other agents in the
team if they are marked as public. Conversely, private fluents are
not available to other agents. We denote with _𝑖 .𝑃 ⊆ _𝑖 .𝐹 the subset
of public fluents of agent _𝑖 and with Λ−𝑖 .𝑃 =

⋃
𝑗=1,...,𝑛,𝑗≠𝑖 _𝑖 .𝑃 ,

the set of all public fluents of all other agents except _𝑖 .
Every agent has a different perspective on world dynamics,

which depends on its own fluents and actions, on the environ-
ment fluents, and on the public fluents of other agents. This is
captured by the notion of agent domain, i.e., a pair D𝑖 = ⟨𝐹𝑖 , 𝐴𝑖 ⟩,
where 𝐹𝑖 = E .𝐹 ∪ _𝑖 .𝐹 ∪Λ−𝑖 .𝑃 and 𝐴𝑖 = _𝑖 .𝐴. On top of this, every
agent can define an agent problem, which is a tuple Π𝑖 = ⟨D𝑖 , 𝐼𝑖 ,𝐺𝑖 ⟩,
where 𝐼𝑖 and 𝐺𝑖 model the initial state and the goal for the agent,
and are expressed as formulas over the fluents 𝐹𝑖 of D𝑖 .

From the set of domainsD𝑖 = ⟨𝐹𝑖 , 𝐴𝑖 ⟩ of all agents, amulti-agent
planning domain, or MA planning domain, is obtained: D𝑀𝐴 =

⟨𝐹𝑀𝐴, 𝐴𝑀𝐴⟩, where 𝐹𝑀𝐴 =
⋃𝑛

𝑖=1 𝐹𝑖 and 𝐴𝑀𝐴 =
⋃𝑛

𝑖=1𝐴𝑖 . From
a collection of agent problems Π𝑖 = ⟨D𝑖 , 𝐼𝑖 ,𝐺𝑖 ⟩, we obtain a
multi-agent planning problem (MA planning problem) Π𝑀𝐴 =

⟨D𝑀𝐴, 𝐼𝑀𝐴,𝐺𝑀𝐴⟩, where D𝑀𝐴 is the MA planning domain ob-
tained from all agent domains D𝑖 and 𝐼𝑀𝐴 =

∧𝑛
𝑖=1 𝐼𝑖 and 𝐺𝑀𝐴 =∧𝑛

𝑖=1𝐺𝑖 . Essentially, Π𝑀𝐴 is the problem obtained by joining the
problems of all the agents. Notice that since the agents act in the
same environment, by the definitions of agent planning domain

A formalization of multi-agent planning with explicit agent representation SAC’23, March 27 –March 31, 2023, Tallinn, Estonia

and MA planning domain, it follows that D𝑀𝐴 includes all the
environment fluents E .𝐹 , in addition to all agents’.

Intuitively, each 𝑓 ∈ 𝐹𝑀𝐴 is a propositional fluent whose value
depends on the current state of the modelled world. Environment
fluents are associated to environment’s and not agents’ properties,
while agent-specific fluents are associated to individual agents and,
while possibly named in the same way, may take different values
for different agents. Agent-specific fluents are not significant when
not associated to any agent.

For instance, a fluent 𝑑𝑜𝑜𝑟_𝑜𝑝𝑒𝑛 ∈ E .𝐹 might be used to model
whether a door is open (fluent true) or closed (false); its current
value does not depend on the state of the agents (although it might
be affected by the actions they execute). Such fluent, as well as its
value, is accessible to all agents, which thus share the knowledge
about the state of the door. As to agent-specific fluents, consider
two different agents _𝑖 and _ 𝑗 and assume both have a fluent, say 𝑎𝑡 ,
modelling their current position. Formally, the agents are associated
to fluents _𝑖 .𝑎𝑡 and _ 𝑗 .𝑎𝑡 , which may take different values in some
configurations of the world, depending on the position of the agents
in the configuration. If predicate 𝑎𝑡 is not associated to any agent,
it is not significant.

The agents in Λ are assumed to be the only actors in the world;
in particular, the environment cannot perform any action. This
is modelled by associating no action to E. When some agent _𝑖
performs an action 𝑎 ∈ _𝑖 .𝐴, it affects the state of the world by
changing the values of the fluents describing the domain.

As typical in planning, actions and fluents can be parameterized
with a set of objects𝑂 . For instance, to express that agent _ holds a
box, we can use the expression: _.ℎ𝑜𝑙𝑑𝑠 (𝑏𝑜𝑥). Since we assume that
the number of objects is finite, i.e., there exist only finitely many
valuations for 𝑏𝑜𝑥 , this parameterization is just a syntactic shortcut
to define one distinct fluent for every parameter assignment.

The MA initial state 𝐼𝑀𝐴 and the goal description𝐺𝑀𝐴 are terms
based on environmental fluents and on agent-specific fluents. The
output plan will be given in terms of agent-specific actions. The
solution of aMA problem is aMA plan represented as a combination
of agent-specific actions that, when executed (according to a specific
execution model) from a state represented by 𝐼𝑀𝐴 , reaches a state
represented by the goal description 𝐺𝑀𝐴 .

In general, for the same problem, there may exist many solution
plans, possibly obtained by serializing in different ways sets of ac-
tions which do not affect executability of each other (but, together,
may affect the executability of other actions needed to reach the
goal). If, for instance, the goal requires to have a door and a window
open, the order in which actions 𝑜𝑝𝑒𝑛_𝑑𝑜𝑜𝑟 and 𝑜𝑝𝑒𝑛_𝑤𝑖𝑛𝑑𝑜𝑤 are
executed is not important. In these situations, instead of provid-
ing a single, rigid, solution, it is convenient to return a compact
representation of a set of plans. To this end, a Partially Order Plan
(POP, [13]) can be used, which is essentially a Directed Acyclic
Graph representing the (partial) ordering constraints over the ac-
tions to be executed 1. In this paper, we adopt this representation.
It is immediate to see that sequential plans are special cases of POP.

1In fact, POPs also contain causal links, not relevant here.

3.2 Compilation to MA-PDDL
In our formalism, agents are represented explicitly. The formalism
is implemented in the Unified Planning (UP) Framework for the
AIPlan4EU project2. The main objective of the project is to make
planning technology accessible to practitioners, companies, PMI
and innovators, to facilitate the use of the planning technology in
real scenarios. The UP library allows for creating a single-agent
problem and extend it to a MA one by simply defining the envi-
ronment and the agents, and associating fluents and actions to the
agents. Algorithms 1 and 2 allow for compiling a MA problem Π𝑀𝐴

into a MA-PDDL specification. We next describe the algorithms.
MA-PDDL allows for specifying problems and domains in either

factored or unfactored way. The latter requires writing a pair of files
corresponding to the problem and the domain for each agent, while
the latter requires only a single domain file and a single problem
file. Our algorithms use the factored representation.

The algorithms take as input a MA problem represented in the
UP formalism and transform the agents into objects, as required by
the MA-PDDL formalism. Agent-specific actions are compiled into
MA-PDDL actions with the agent type set as the action parameter.
Agent-specific fluents are compiled into private predicates that
have as their parameter the type of the agent. Environment fluents
are compiled into domain predicates or functions.

Algorithm 1 implements the planning domain compilation pro-
cess. For simplicity, we consider only boolean predicates and instan-
taneous actions, but generalizing the process to functions and other
actions classes (e.g., durative or sensing actions) is straightforward.
The main steps of the algorithm are the following:

• 𝑈 is the set of MA problem’s user types, i.e., the user-defined
types of objects. User types are organized hierarchically, as
there may exist subtypes; types without a parent are simply
compiled as objects (lines 11 - 15).

• Environment fluents are compiled as predicates; agent-
specific fluents are compiled into predicates, according to
their privacy flag (lines 16 - 30).

• Each agent-specific action is compiled into an action. Func-
tion 𝑎𝑔𝑒𝑛𝑡_𝑠𝑝𝑒𝑐 (not reported here) produces, for an agent-
specific fluent, the correspondingMA-PDDL expression spec-
ifying the involved types; for instance, fluent 𝑎𝑡 (?𝑙𝑜𝑐) is
compiled as (𝑎𝑡 ?𝑎𝑔𝑒𝑛𝑡 ?𝑙𝑜𝑐) (lines 31 - 43).

Algorithm 2 implements a planning problem’s compilation.
• 𝑂 is the set of objects in the MA problem. Domain objects
have two parameters, name and type, while agent objects
also have a third parameter, the agent owning the object.
The algorithm outputs a list of such objects, together with
their parameters. Agent objects are specified using keyword
“:private” (lines 8 - 13).

• 𝐼 is the set of fluents’ initial values. For an initial value 𝑖 ∈ 𝐼 ,
by 𝑖 .𝑓 we denote the fluent 𝑓 that the initial value refers to.
Initial values can be agent-specific, meaning that the fluent
they refer to is so. For this class of initial values, the algorithm
produce an MA-PDDL specification, including the fluent, the
agent and the list of involved objects. For non-agent-specific
initial values, instead, the agent is omitted (lines 14 - 19).

2https://www.aiplan4eu-project.eu/

https://www.aiplan4eu-project.eu/

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia Trapasso et al.

• Similarly to the initial values, also goals can be agent-specific.
Agent-specific goals are identified with the keyword :agent
and produce an output similar to that of initial values. Func-
tion 𝑎𝑔𝑒𝑛𝑡_𝑠𝑝𝑒𝑐 (not reported) extract the goals from the
goal formula 𝐺 . (line 20).

Algorithm 1MA-PDDL domain compilation for agent (_𝑖)
1: Environment: E
2: Agent-specific fluents: _𝑖 .𝐹
3: Subset of agent-specific public fluents: _𝑖 .𝑃
4: Other agents public fluents: Λ−𝑖 .𝑃
5: Agent-specific actions: _𝑖 .𝐴
6: Π𝑀𝐴 : MA planning problem
7: 𝑈 : set of UserType in Π𝑀𝐴
8:
9: write: "(define ("Π𝑀𝐴 .name") (:requirements$" Π𝑀𝐴 .req ")"
10: write: "(:types"
11: for all Type 𝑡 ∈ 𝑈 , SubType 𝑠 ∈ 𝑈 do
12: write: 𝑡 "- object"
13: write: 𝑠 "-" 𝑠.𝑡𝑦𝑝𝑒
14: end for
15: write: ")"
16: write: "(:function"
17: for all IntType \or RealType 𝑓 ∈ E .𝐹 ∪ Λ−𝑖 .𝑃 do
18: if 𝑓 ∈ Λ−𝑖 .𝑃 then write: "(" 𝑓 .𝑛𝑎𝑚𝑒 "- ?agent -" _𝑖 .𝑜𝑏 𝑗𝑒𝑐𝑡 .𝑡𝑦𝑝𝑒 "-" 𝑓 .𝑡𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 ")";
19: elif 𝑓 ∈ E .𝐹 then write : "(" 𝑓 .𝑛𝑎𝑚𝑒 "-" 𝑓 .𝑡𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 ")";
20: end for
21: write: "(:predicate"
22: for all BoolType 𝑓 ∈ E .𝐹 ∪ Λ−𝑖 .𝑃 do
23: if 𝑓 ∈ Λ−𝑖 .𝑃 then write: "(" 𝑓 .𝑛𝑎𝑚𝑒 "- ?agent -" _𝑖 .𝑜𝑏 𝑗𝑒𝑐𝑡 .𝑡𝑦𝑝𝑒 "-" 𝑓 .𝑡𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 ")";
24: elif 𝑓 ∈ E .𝐹 then write : "(" 𝑓 .𝑛𝑎𝑚𝑒 "-" 𝑓 .𝑡𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 ")";
25: end for
26: write: "(:private"
27: for 𝑓 in _𝑖 .𝐹 do
28: write: "(" 𝑓 .𝑛𝑎𝑚𝑒 "- ?agent -" _𝑖 .𝑜𝑏 𝑗𝑒𝑐𝑡 .𝑡𝑦𝑝𝑒 "-" 𝑓 .𝑡𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 ")"
29: end for
30: write: ")))"
31: for all 𝑎 in _𝑖 .𝐴 do
32: write: "(:action" 𝑎.𝑛𝑎𝑚𝑒
33: for all 𝑎𝑝 in 𝑎.𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 do
34: write: ":parameters (?a - agent" 𝑎.𝑡𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 𝑎𝑝.𝑛𝑎𝑚𝑒 "-" 𝑎𝑝.𝑡𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 ")"
35: end for
36: for 𝑝𝑟 in 𝑎.𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 do
37: write: ":precondition ("𝑎𝑔𝑒𝑛𝑡_𝑠𝑝𝑒𝑐 (𝑝𝑟) ")"
38: end for
39: for 𝑒 in 𝑎.𝑒 𝑓 𝑓 𝑒𝑐𝑡 do
40: write: ":effect ("𝑎𝑔𝑒𝑛𝑡_𝑠𝑝𝑒𝑐 (𝑒) ")"
41: end for
42: end for
43: write: ”))”

Algorithm 2MA-PDDL problem compilation for agent (_𝑖)
1: 𝑈 : set of UserType in Π𝑀𝐴
2: 𝑂 : set of Objects in Π𝑀𝐴
3: 𝐼 : set of initial values in Π𝑀𝐴
4: 𝐺 : goal formula of Π𝑀𝐴
5:
6: write: "(define (problem" Π𝑀𝐴 .𝑛𝑎𝑚𝑒 "- problem)")
7: write: "(:domain Π𝑀𝐴 .𝑛𝑎𝑚𝑒 "- domain)"
8: write: "(:objects"
9: for 𝑜 ∈ 𝑂 do
10: if 𝑜 ∈ _𝑖 .𝑂 then write: "(:private" _𝑖 .𝑛𝑎𝑚𝑒 𝑜.𝑛𝑎𝑚𝑒 "-" 𝑜.𝑡𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 ")";
11: elif 𝑜 ∈ 𝑂 \ _𝑖 .𝑂 then write: 𝑜.𝑛𝑎𝑚𝑒 "-" 𝑜.𝑡𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 ;
12: end for
13: write: ")"
14: write: "(:init "
15: for 𝑖 ∈ 𝐼 do
16: if 𝑖 .𝑓 ∈ _𝑖 .𝐹 then write: "(" 𝑖 .𝑓 .𝑛𝑎𝑚𝑒 𝑖._𝑖 .𝑛𝑎𝑚𝑒 𝑖.𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 ")";
17: elif 𝑖 .𝑓 ∉ _𝑖 .𝐹 then write: "(" 𝑖 .𝑓 .𝑛𝑎𝑚𝑒 𝑖.𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 ")";
18: end for
19: write: ")"
20: write: "(:goal " 𝑎𝑔𝑒𝑛𝑡_𝑠𝑝𝑒𝑐 (𝐺) "))"

3.3 Examples
To illustrate the use of our MA planning formalism implemented in
the Unified Planning (UP) framework, we present three examples:

a simple domain, a benchmark used in IPC competitions, and the
formalization of a real industrial problem.

Multi-robot loader. We first describe a simple single-agent prob-
lem robot loader and its extension to a MA problem multi-robot
loader. The goal of the problem is to transport a cargo (whose posi-
tion is denoted by the fluent 𝑐𝑎𝑟𝑔𝑜_𝑎𝑡) from location l2 to location l1.
The concept of location is modelled by the UserType Location, l1 and
l2 are two objects with this type. The fluents 𝑟𝑜𝑏𝑜𝑡_𝑎𝑡 and 𝑐𝑎𝑟𝑔𝑜_𝑎𝑡
indicate the positions of the robot and of the cargo. The fluent
𝑐𝑎𝑟𝑔𝑜_𝑚𝑜𝑢𝑛𝑡𝑒𝑑 models the concept of having the cargo mounted
on the robot and the fluent 𝑖𝑠_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 indicates that there is an
edge between two locations. The actions aremove, load, and unload,
with preconditions and effects that model the dynamics of the sys-
tem. Action move has two parameters of type Location indicating
the current position of the robot 𝑙_𝑓 𝑟𝑜𝑚 and the intended desti-
nation of the movement 𝑙_𝑡𝑜 , while actions load and unload have
only one parameter of type Location. A possible sequential plan,
generated for example, by classical planners like fast-downward [2],
TAMER [12] or Pyperplan [1], concatenates move, load, and unload
actions to achieve a final state in which the cargo is in the desired
location, i.e., 𝑐𝑎𝑟𝑔𝑜_𝑎𝑡 (𝑙1) holds.

A snippet of UP code is shown below
1#Robot loader

2Location = UserType("Location")

3robot_at = Fluent("robot_at", BoolType (), position=Location)

4cargo_at = Fluent("cargo_at", BoolType (), position=Location)

5cargo_mounted = Fluent("cargo_mounted")

6is_connected = Fluent("is_connected", BoolType (), l1=Location , l2=

Location)

7move = InstantaneousAction("move", l_from=Location , l_to=Location)

8l_from = move.parameter("l_from")

9l_to = move.parameter("l_to")

10move.add_precondition(is_connected(l_from , l_to))

11move.add_precondition(robot_at(l_from))

12move.add_precondition(Not(robot_at(l_to)))

13move.add_effect(robot_at(l_from), False)

14move.add_effect(robot_at(l_to), True)

15load = InstantaneousAction("load", loc=Location)

16...

17unload = InstantaneousAction("unload", loc=Location)

18...

19l1 = Object("l1", Location)

20l2 = Object("l2", Location)

21problem = Problem("robot_loader")

22problem.add_fluent(robot_at)

23...

24problem.add_action(move)

25...

26problem.add_object(l1)

27problem.add_object(l2)

28problem.set_initial_value(robot_at(l1), True)

29problem.set_initial_value(cargo_at(l2), True)

30...

31problem.add_goal(cargo_at(l1))

From the above single-agent specification, we can easily describe
a MAP problem, by explicitly defining agents. In this example, we
will show how to extend the domain with two robots. The Multi-
robot loader problem will be specified by extending the Robot loader
problem, reusing fluent, action and object specifications.

In the MAP problem, the agents are named 𝑟𝑜𝑏𝑜𝑡1 and 𝑟𝑜𝑏𝑜𝑡2.
The fluents 𝑖𝑠_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 and 𝑐𝑎𝑟𝑔𝑜_𝑎𝑡 are environment fluents,
while 𝑟𝑜𝑏𝑜𝑡_𝑎𝑡 (renamed into 𝑎𝑡) and 𝑐𝑎𝑟𝑔𝑜_𝑎𝑚𝑜𝑢𝑛𝑡𝑒𝑑 are agent-
specific fluents. The actions move, load and unload are also agent-
specific. The association between agents and agent-specific fluents

A formalization of multi-agent planning with explicit agent representation SAC’23, March 27 –March 31, 2023, Tallinn, Estonia

and actions is obtained in UP through methods add_fluent and
add_action of theAction class. To specify the initial value of the plan-
ning problem, we use the operator Dot, which allows associating an
agent-specific fluent with an agent. For example, Dot(robot1,at(l1))
denotes fluent 𝑎𝑡 (𝑙1) for agent 𝑟𝑜𝑏𝑜𝑡1, i.e., 𝑟𝑜𝑏𝑜𝑡1.𝑎𝑡 (𝑙1), while The
goal of the MAP problem is still to have the cargo in the desired
location. In this problem, three locations are considered and a pos-
sible sequential plan concatenates move, load, and unload actions
of both agents. The UP code snippet for the MA extension of the
problem is reported below.

1# Multi -robot loader

2problem = MultiAgentProblem("multi -robot_loader")

3at = Fluent("at", Location) # replaces robot_at

4problem.ma_environment.add_fluent(is_connected)

5problem.ma_environment.add_fluent(cargo_at)

6# agent definition

7robot1 = Agent("robot1", problem)

8robot1.add_fluent(at)

9robot1.add_fluent(cargo_mounted)

10robot1.add_action(move)

11robot1.add_action(load)

12robot1.add_action(unload)

13robot2 = Agent("robot2", problem)

14...

15problem.add_agent(robot1)

16problem.add_agent(robot2)

17# New objects

18l3 = Object("l3", Location)

19problem.add_objects ([l1, l2, l3])

20# Initial state

21problem.set_initial_value(is_connected(l1, l2), True)

22...

23problem.set_initial_value(Dot(robot1 , at(l1)), true)

24problem.set_initial_value(Dot(robot2 , at(l2)), true)

25problem.set_initial_value(cargo_at(l3), True)

26...

27problem.set_initial_value(Dot(robot1 , cargo_mounted), False)

28problem.set_initial_value(Dot(robot2 , cargo_mounted), False)

29# Goal

30problem.add_goal(cargo_at(l1))

Depot. Depot is a standard benchmark for MAP and MA-PDDL
solvers. This domain is more complex than the previous one, as
different types of agents work together to achieve the goal. This
domain was designed for the AIPS 2002 planning competition[7] and
combines logistics domains and blocks domains, well known in the
literature. The Depot domain (rewritten in MA-PDDL) [4] is part
of the 10 benchmarks used in the 2015 CoDMAP competition [3].
There are two types of agents, driver and place. The driver agents
drive the trucks to transport the crates between the warehouse, with
the help of hoists present in each warehouse. The agent’s depots
and distributors are place-type, as each place has control over a
hoist.

The actions are:

• drive: move the truck from one place to another.
• load: load a crate on a truck via a hoist.
• unload: unloads a crate from a truck via a hoist.
• lift: lifts a crate placed on a pallet or other crate.
• drop: drop a crate onto a pallet or another crate.

Figure 1: Initial state - Depot

In the initial state, truck1 driven by driver1, is at depot0 and truck2
driven by driver2, is at distributor1. The driver driving the truck
is free to move between all positions. The global goal is to have
crate0 on pallet2 and crate1 on pallet1, so we need to move crate0
to distributor1 and crate1 to distributor0.

In our example, we changed the representation of the Depot
domain by representing agents explicitly but keeping it equivalent
to the representation in MA-PDDL. To make the agents explicit, we
instantiated the agents: (depot0, distributor0, distributor1, driver0,
and driver1, according to our formalism.

In MA-PDDL Depot representation, the agents are defined as
object types associated with the action. As already mentioned, in
our formalism, agents are not objects. Moreover, we use a more
general notation in which each agent is named individually. For
example, the drive action is parametric to both the explicit agents
driver0 and driver1.

Below is a snippet of the MA-PDDL specification of the Depot
problem.

1#MA-PDDL unfactored (depot problem)

2(:init

3(driving driver0 truck0)

4(driving driver1 truck1)

5(at pallet0 depot0)

6(clear crate1)

7(at pallet1 distributor0)

8(clear crate0)

9(at pallet2 distributor1)

10(clear pallet2)

11(at truck0 distributor1)

12(at truck1 depot0)

13(at hoist0 depot0)

14(available depot0 hoist0)

15(at hoist1 distributor0)

16(available distributor0 hoist1)

17(at hoist2 distributor1)

18(available distributor1 hoist2)

19(at crate0 distributor0)

20(on crate0 pallet1)

21(at crate1 depot0)

22(on crate1 pallet0)

23)

In the initial state of Depot’s problem, we can see that the objects
representing agents also indicate their location. For example, in
(line 5 of MA-PDDL problem), pallet0 has as initial position depot0,
which is an object representing the location of pallet0, but also the
agent executing actions. In our formalism, we avoid this kind of

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia Trapasso et al.

semantic confusion, since agents are entities different from objects
and cannot be used in their place.

A snippet of UP code for the Depot problem is shown below.
The agents are explicitly described and associated to actions and
fluents, allowing for a description with clear semantics. In this
case, agents and places are clearly separated and a Dot operator is
used to denote agent-specific fluents. For example, the predicate
representing the position of agent depot0 at location place0 is
denoted with Dot(depot0, pos(place0))

1#MultiAgent -Depot

2place = UserType("place")

3locatable = UserType("locatable")

4...

5at = Fluent("at", BoolType (), locatable=locatable , place=place)

6pos = Fluent("pos", BoolType (), place=place)

7...

8drive = InstantaneousAction("drive", x=truck , y=place , z=place)

9x = drive.parameter("x")

10y = drive.parameter("y")

11z = drive.parameter("z")

12drive.add_precondition(at(x, y))

13drive.add_precondition(driving(x))

14drive.add_effect(at(x, z), True)

15drive.add_effect(at(x, y), False)

16lift = InstantaneousAction("lift", p=place , x=hoist , y=crate , z=

surface)

17...

18drop = InstantaneousAction("drop", p=place , x=hoist , y=crate , z=

surface)

19...

20load = InstantaneousAction("load", p=place , x=hoist , y=crate , z=

truck)

21...

22unload = InstantaneousAction("unload", p=place , x=hoist , y=crate ,

z=truck)

23...

24problem = MultiAgentProblem("depot")

25depot0 = Agent("depot0", problem)

26distributor0 = Agent("distributor0", problem)

27distributor1 = Agent("distributor1", problem)

28driver0 = Agent("driver0", problem)

29driver1 = Agent("driver1", problem)

30driver0.add_action(drive)

31driver1.add_action(drive)

32depot0.add_action(lift)

33...

34distributor0.add_action(lift)

35...

36distributor1.add_action(lift)

37...

38problem.ma_environment.add_fluent(at, default_initial_value=False)

39...

40driver0.add_fluent(driving , default_initial_value=False)

41depot0.add_fluent(pos)

42driver1.add_fluent(driving , default_initial_value=False)

43driver1.add_fluent(pos)

44depot0.add_fluent(lifting , default_initial_value=False)

45depot0.add_fluent(available , default_initial_value=False)

46depot0.add_fluent(pos)

47distributor0.add_fluent(lifting , default_initial_value=False)

48distributor0.add_fluent(available , default_initial_value=False)

49distributor0.add_fluent(pos)

50distributor1.add_fluent(lifting , default_initial_value=False)

51distributor1.add_fluent(available , default_initial_value=False)

52distributor1.add_fluent(pos)

53problem.add_agent(depot0)

54...

55truck0 = Object("truck0", truck)

56place0 = Object("place0", place)

57...

58problem.add_object(truck0)

59problem.add_object(place0)

60...

61problem.set_initial_value(Dot(depot0 , pos(place0)), True)

62problem.set_initial_value(at(truck1 , place0), True)

63...

64problem.add_goal(on(crate0 , pallet2))

65problem.add_goal(on(crate1 , pallet1))

As already mentioned, our formalism is equivalent to MA-PDDL
and Algorithms 1 and 2 are used to generate MA-PDDL specifica-
tions and solve the problem with MA-PDDL solvers. An example
of a solution provided by FMAP[10] planner (integrated into the
UP library) is the Partial Order Plan (POP) shown in Figure 2.

1with OneshotPlanner(problem_kind=problem.kind) as planner:

2result = planner.solve(problem)

3print("Adjacency list:", result.plan.get_adjacency_list)

Figure 2: Partial Order Plan - MA-Depot example

Figure 3: Simulated environment for robotic quality tests

Robotic automatic quality tests. The last example presented
comes from a real industrial scenario. Here robots are employed
to support people in the development of automated quality tests
that, for statistical significance, need to be run on a high number of
samples (thousands), since they are used in order to guide scientists
in the selection and evolution of new products. In particular, we
considered quality tests for laundry pouches operated by a robotic
arm. In addition to the robotic arm, the scenario contains some
measurement devices to be used to take quality measures about the
pouches. The system’s goal is to perform all the measures about all

A formalization of multi-agent planning with explicit agent representation SAC’23, March 27 –March 31, 2023, Tallinn, Estonia

the pouches that are available in a cabinet drawer in the shortest
time. A gazebo simulation environment has been setup to speed up
development and testing (see Figure 3).

The formalization of this planning problem ended up in a domain
composed by 8 actions, 14 predicates, and 28 objects, including
locations, two states of the gripper (reset or active), four postures
of the gripper (indicating how much the gripper is opened) and two
modalities for grasping a pouch (horizontal or vertical).

Here some relevant aspects taken into account during the for-
malization are described. First, two different predicates were used
to express the position of a pouch: when the pouch is resting in
a drawer or on a measurement device or in the bin, the predicate
‘pouchRestIn ?loc’ is used; when the pouch is in a location while car-
ried by the gripper, ‘pouchAt ?loc’ is employed. A different predicate
‘at ?loc’ expresses the location occupied by the gripper. Afterwards,
the motion actions of the gripper from one location to another
were distinguished into three types, since they had different pre-
conditions and effects: ‘goto_grasp’ when the opened gripper has
to go in a suitable position for grasping a pouch resting in a loca-
tion, ‘pickup’ when the gripper, already closed on a pouch, has to
lift it and ‘goto’ for the remaining displacements. Still, concerning
these motion actions, some predicates were introduced, in order
to classify the locations and allow the gripper to appropriately
move between them, avoiding collisions. An example is ‘dropPos
?x ?y’, where ‘x’ is the location the gripper needs to be at when it
wants to drop the pouch on a device ‘y’. Furthermore, particular
attention was given to the grasping movement and three predicates
were introduced for managing it. Once the gripper has reached the
proper grasping position, it changes its posture, by closing itself on
the pouch, making the predicate ‘touched’ true. The lifting action
follows, making ‘picked’ true. Finally, a sensing action checks if the
grasping was successful and if so, makes the ‘grasped’ predicate
true. It is also relevant to pay attention if the grasping happened
horizontally or vertically with respect to the pouch. This is done
through the predicate ‘graspMode ?modality’, which constitutes a
precondition for some motion actions. In fact, some devices require
the grasp to have been previously performed horizontally to avoid
the pouch’s misplacing when the gripper puts it on the device.

There are two possible ways of modelling the domain: it can be
treated as a single or MA problem. In the former, the planner will
return a solution represented as a sequence of actions: a sequence
of robot pick-and-place and measurement actions that reaches a
goal state in which all the pouches have been correctly tested. A
UP code snippet is presented below. The sequential plan generated
by a classical planner contains a sequence of 21 actions to process
each pouch. This sequence contains two measuring actions and
actions for moving the robot arm and the gripper.

1Location = UserType("Location")

2pouchIn = Fluent("pouchIn", BoolType (), device=Location)

3at = Fluent("at", BoolType (), position=Location)

4restLoc = Fluent("restLoc", BoolType (), position=Location , device=

Location)

5reset = Fluent("reset", BoolType (), device=Location)

6measuredAt = Fluent("measuredAt", BoolType (), device=Location)

7measure=InstantaneousAction("measure", device=Location , rest=

Location)

8device = move.parameter("device")

9rest = move.parameter("rest")

10measure.add_precondition(pouchIn(device))

11measure.add_precondition(at(rest))

12measure.add_precondition(restLoc(rest , device))

13measure.add_precondition(reset(device))

14move.add_effect(measuredAt(device), True)

15move.add_effect(reset(device), False)

16...

17goto=InstantaneousAction("goto", from=Location , to=Location)

18...

19movegripper_grasp=InstantaneousAction("movegripper_grasp", from=

Location , to=Location)

20...

21loc1 = Object("loc1", Location)

22loc2 = Object("loc2", Location)

23device1 = Object("device1", Location)

24problem = Problem("quality_test")

25problem.add_fluent(pouchIn)

26...

27problem.add_action(measure)

28...

29problem.add_object(loc1)

30...

31problem.set_initial_value(at(loc1), True)

32problem.set_initial_value(restLoc(loc2 , device1), True)

33...

34problem.add_goal(measuredAt(device1))

However, this approach does not guarantee an optimal through-
put, since sensors usually take time to perform measurements dur-
ing which the robot remains idle, while it could operate on other
pouches. A possible solution, with little effort in coding, is to treat
the problem as a MA one, not considering only the robot as an
agent, but also the measurement devices. It is sufficient to attribute
the measurement actions to the corresponding devices and all the
other actions to the robotic agent and to distribute the predicates
between the agents’ predicates and the local ones in the most ap-
propriate way. The UP code for the MA extension of the problem is
illustrated below.

1problem = MultiAgentProblem("multi -agent_quality_test")

2...

3problem.ma_environment.add_fluent(pouchIn)

4problem.ma_environment.add_fluent(restLoc)

5problem.ma_environment.add_fluent(measuredAt)

6...

7robot = Agent("robot", problem)

8robot.add_fluent(at)

9robot.add_action(goto)

10robot.add_action(movegripper_grasp)

11problem.add_agent(robot)

12device1 = Agent("device1", problem)

13device1.add_fluent(reset)

14device1.add_action(measure)

15problem.add_agent(device1)

16...

17problem.set_initial_value(Dot(device1 , reset), True)

18problem.set_initial_value(Dot(robot , at(loc1)), True)

19problem.set_initial_value(restLoc(loc2 , device1loc), True)

20...

21problem.add_goal(measuredAt(device1))

By using a MAP planner, e.g., FMAP, it is possible to obtain a
Partial Order Plan, in which robot actions and measurement opera-
tions are parallelized in order to increase the overall throughput. In
particular, the measurement actions are executed in parallel with
actions to move the robot arm to the position for checking and
grasping the pouch after the measurement. This allows for reduc-
ing the overall execution of the plan to 19 steps instead of 21, thus
also improving the system’s overall throughput (processed pouches
per hour).

To further improve performance, we are developing solutions
allowing for higher action parallelism and introducing other robotic
arms (other agents) that cooperate to achieve the desired goal.

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia Trapasso et al.

Plan generation. In all the examples presented above, we used the
UP libraries and planning engines to generate plans. This operation
can be conveniently performed thanks to the ability to automat-
ically select the most suitable planner given the features of the
planning problem. In fact, when defining a UP planning domain,
the structures used in the preconditions and effects formulas are
analysed in order to determine the problem type. With this infor-
mation, it is possible to generate plans in a unified way (see the
snippet code below), with the automatic selection of a planning
engine from the problem type.

1with OneshotPlanner(problem_kind=problemP&G.kind) as planner:

2result = planner.solve(problem)

3if result.status in unified_planning.engines.results.

POSITIVE_OUTCOMES:

4print(f"{planner.name} found this plan: {result.plan}")

5else:

6print("No plan found.")

As shown in the above examples, the UP formalism allows for
improving the usability and effectiveness of AI planning technology.
In particular, the MA planning formalization presented in this paper
and its implementation in the UP allows to design, implement and
test incremental planning-based solutions.

4 MODELLING OTHER AGENTS
Modelling other agents is an important aspect for MA planning
and reasoning that allows for more sophisticated reasoning abil-
ities based not only on facts about the environment, but also on
other agents’ mental states and knowledge about them. In this case,
the model of agent _𝑖 can contain an estimation, the belief or the
knowledge about the model of another agent _ 𝑗 . In other words,
by modelling other agents, we can distinguish between what _ 𝑗
knows or believes about the world from what _𝑖 knows or believes
about what _ 𝑗 knows or believes about the world. For example, we
can model that _ 𝑗 .𝜙 is true in _ 𝑗 model (i.e., _ 𝑗 knows or believes
that 𝜙 is true), while _ 𝑗 .𝜙 is unknown in _𝑖 model (i.e., _𝑖 does not
know or does not believe that _ 𝑗 knows or believes that 𝜙 is true.
When modelling other agents, it is not possible to assume perfect
knowledge about such models and we thus need to consider models
of other agents as estimates or approximations.

Our MA formalization described in the previous section can be
easily extended to represent models of other agents, as described
here. The domain specification for agent _𝑖 that includes an estima-
tion of the model of agent _ 𝑗 can be defined as D+

𝑖
= ⟨D𝑖 , D̂𝑖, 𝑗 ⟩,

where D̂𝑖, 𝑗 is an estimation (approximation) of D𝑗 from agent _𝑖
perspective (what _𝑖 knows or believes about _ 𝑗). The correspond-
ing agent problem can be defined as Π+

𝑖
= ⟨Π𝑖 , Π̂𝑖, 𝑗 ⟩, with Π̂𝑖, 𝑗

being an approximation of Π 𝑗 from _𝑖 perspective. With this model,
agent _𝑖 can also reason on the (estimated) model of agent _ 𝑗 and
it is possible to define novel interesting reasoning and planning
problems, some of which are described here for example.

1) Planning problems considering the goals of multiple agents: a)
find a plan 𝜋𝑖 for agent _𝑖 (i.e., solve Π𝑖 to achieve𝐺𝑖) that does not
prevent another agent _ 𝑗 to achieve its own goal 𝐺 𝑗 , i.e., it exists a
plan 𝜋 𝑗 such that the execution of both 𝜋𝑖 and 𝜋 𝑗 will reach both
𝐺𝑖 and 𝐺 𝑗 ; b) find a plan 𝜋𝑖 for agent _𝑖 that achieves 𝐺𝑖 ∧𝐺 𝑗 , i.e.
that achieves also _ 𝑗 goal.

2) Planning considering actions of multiple agents: a) find a joint
plan 𝜋 with actions in 𝐴𝑖 ∪𝐴 𝑗 to achieve a common goal 𝐺𝑖 ∧𝐺 𝑗 .

3) Plan explanations as model reconciliation [9]: a) given 𝜋𝑖 that
is not valid or optimal in D̂𝑖, 𝑗 , find an update of D̂𝑖, 𝑗 that will make
the plan valid or optimal.

Defining and solving such planning problems will significantly
increase the reasoning and planning capabilities of MA systems
and will enable more interesting problem specifications considering
teams formed by humans and artificial agents, allowing for a formal
specification of human-aware reasoning and planning problems.

5 CONCLUSIONS
In this paper, we have presented a formalization of MAP where
agents are explicitly modelled and distinguished from objects (not
having an active role in the domain). We described the formalism
and its compilation into the well-known language MA-PDDL, thus
allowing for using existing solvers. We discussed some examples
where the proposed approach has been successfully used, including
a relevant industrial use case. Finally, we presented an extension
to model other agents that can introduce novel interesting MA
problems. The formalism has been implemented in the Unified
Planning formalism developed within the AIPlan4EU project and is
thus available to researchers and practitioners to effectively model
and solve MA problems, with an intuitive API and clear semantics.

ACKNOWLEDGMENTS
Work partly supported by projects: EU ICT-49 2021 AIPlan4EU
(No. 101016442), ERC Advanced Grant WhiteMech (No. 834228),
and EU ICT-48 2020 TAILOR (No. 952215).

REFERENCES
[1] Yusra Alkhazraji, Matthias Frorath, Markus Grützner, Malte Helmert, Thomas

Liebetraut, Robert Mattmüller, Manuela Ortlieb, Jendrik Seipp, Tobias Springen-
berg, Philip Stahl, and Jan Wülfing. 2020. Pyperplan. https://doi.org/10.5281/
zenodo.3700819

[2] Malte Helmert. 2006. The Fast Downward Planning System. Journal of Artificial
Intelligence Research 26 (2006), 191–246.

[3] Antonín Komenda, Michal Štolba, and Dániel Kovács. 2016. The International
Competition of Distributed and Multiagent Planners (CoDMAP). AI Magazine 37
(10 2016), 109–115. https://doi.org/10.1609/aimag.v37i3.2658

[4] Antonín Komenda, Michal Štolba, Dániel Kovács, and Michal Pechoucek. 2015.
Proc. of the 3rd Workshop on Distributed and Multi-Agent Planning. 94 pages.

[5] Dániel László Kovács. 2011. BNF definition of PDDL 3.1. Unpublished manu-
script from the IPC-2011. https://helios.hud.ac.uk/scommv/IPC-14/repository/
kovacs-pddl-3.1-2011.pdf

[6] Dániel László Kovács. 2012. A multi-agent extension of PDDL3.1. In ICAPS-2012
Proc. of the 3rd Workshop on Distributed and Multi-Agent Planning. 19–27.

[7] Derek Long and Maria Fox. 2003. The 3rd International Planning Competition:
Results and Analysis. J. Artif. Intell. Res. (JAIR) 20 (12 2003), 1–59.

[8] Drew M. McDermott. 2000. The 1998 AI Planning Systems Competition. AI
Magazine 21, 2 (Jun. 2000), 35. https://doi.org/10.1609/aimag.v21i2.1506

[9] S. Sreedharan, T. Chakraborti, and S. Kambhampati. 2021. Foundations of expla-
nations as model reconciliation. Artificial Intelligence 301 (2021).

[10] Alejandro Torreño, Óscar Sapena, and Eva Onaindia. 2018. FMAP: A Platform
for the Development of Distributed Multi-Agent Planning Systems. Know. Based
Syst. 145, C (apr 2018), 166–168. https://doi.org/10.1016/j.knosys.2018.01.013

[11] Alejandro Torreño, Óscar Sapena, and Eva Onaindia. 2018. FMAP: A platform for
the development of distributed multi-agent planning systems. Knowledge-Based
Systems 145 (2018), 166–168. https://doi.org/10.1016/j.knosys.2018.01.013

[12] Alessandro Valentini, Andrea Micheli, and Alessandro Cimatti. 2020. Temporal
Planning with Intermediate Conditions and Effects. In Proc. of the 34th Conference
on Artificial Intelligence (AAAI ’20). AAAI Press, 9975–9982.

[13] Daniel S. Weld. 1994. An Introduction to Least Commitment Planning. AI Mag.
15, 4 (1994), 27–61. https://doi.org/10.1609/aimag.v15i4.1109

https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.1609/aimag.v37i3.2658
https://helios.hud.ac.uk/scommv/IPC-14/repository/kovacs-pddl-3.1-2011.pdf
https://helios.hud.ac.uk/scommv/IPC-14/repository/kovacs-pddl-3.1-2011.pdf
https://doi.org/10.1609/aimag.v21i2.1506
https://doi.org/10.1016/j.knosys.2018.01.013
https://doi.org/10.1016/j.knosys.2018.01.013
https://doi.org/10.1609/aimag.v15i4.1109

	Abstract
	1 Introduction
	2 Related Work
	3 Multi-agent modelling
	3.1 Formalism and problem specification
	3.2 Compilation to MA-PDDL
	3.3 Examples

	4 Modelling other agents
	5 Conclusions
	Acknowledgments
	References

