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Abstract

Unmanned aerial vehicles (UAVs) are becoming more and more in demand, their use
initially spread for the execution of military missions, now it is becoming increasingly
popular in the civilian field. UAVs are involved in the most exterminated missions. In
this thesis, we address the problem of the risk of conflicts between UAVs. Collision
avoidance is a problem that also affects the BUBBLES project, a project funded by the
European community. We abstractly define the problem and then solve it by introducing
a no-interference function that allows us to solve the possible conflicts between agents,
so, between UAVs. The main techniques used to solve the problem are Reinforcement
Learning and ltlf/ldlf temporal logics.
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Chapter 1

Introduction

In this descriptive chapter, a general overview will be made: on the reasons for which I
decided to work on this thesis project, on the operational scenario, on the definition of
the problem, and on the techniques used to solve it.

1.1 The importance of UAVs in the near future

In recent years, drones have enjoyed considerable success, their market is constantly
growing, both in the military and in the civil sector. UAVs have been around for many
years, even the first UAVs designed date back to World War I, when both the United
States and France were working on unmanned automatic airplanes. Since then great
strides have been made, UAVs are used in different fields, from agriculture to video
surveillance, from the delivery of network services to the delivery of medical supplies,
food, or other goods. This last field is the one that intrigued me most, in particular the
delivery of medical supplies of any kind.

1.2 Motivation

The interest in UAVs is constantly growing, in the coming years they will be used in
many fields and many jobs in the civil and military sectors will be replaced by drone
technology. Before that happens, however, there are several engineering challenges to be
solved, one of these arguably the most important being safety. By safety we mean the
minimization of the risk of collision and the analysis of potential conflicts based on the
position of the trajectories in space.

This thesis project was born for the personal interest in Machine Learning and in
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particular, for the Reinforcement Learning algorithms applied soon in which UAVs will
be able to manage and share airspace in total safety according to temporal logic and
priority.

Minimizing the risk of collision is covered extensively in the BUBBLES project. The
BUBBLES project is a large project funded by the European community, coordinated by
the Universitat Politècnica de València with the participation of the DIAG, Sapienza
University of Rome and other public and private bodies. The main objective of the
BUBBLES project is to create Artificial Intelligent (AI) algorithms to calculate the
collision risk of UAS leading to minima and separation methods. The scenario of this
thesis project was inspired and then remodelled by an operational scenario present in the
World package 3 (Catalog of Generic ConOps) of the BUBBLES project.

1.3 Proposed Solution

Minimizing the risk of collision is a fundamental requirement to carry out Multi-UAV
missions safely, this requirement is more important than efficiency and must be guaranteed.
In this thesis as in the BUBBLES project, the minimization of the collision risk is the
primary requirement. Another fundamental objective of this thesis is the management of
missions according to their priority. Hence, each UAV must reach its goal in the shortest
possible time based on the priority of the task assigned to it, ensuring safety.

To solve this problem, Reinforcement Learning algorithms are used which through the
use of rewards allow each UAV to reach its goals and to manage priorities a Restraining
Bolt is used for each agent, which imposes the restrictive specifications using the linear
temporal logic on ltlf/ldlf finished traces.

To achieve this goal, Reinforcement Learning algorithms were used: Q-Learning and
SARSA, while the Restraining Bolt is specified logically using linear time logic on finite
traces ltlf/ldlf over a set of high-level symbolic features (De Giacomo et al., 2020).
The Restraining Bolt has the function of imposing restrictive specifications to limit the
agent’s actions to a series of desired behaviours. This limitation is specified by the
ltlf/ldlf formulas, which in our case will specify to the agent the temporal and priority
goals.

1.3.1 Scenario Characteristics

As it was previously said, the application scenarios in which UAVs can be used are very
many, the scenario that is examined in this thesis project concerns the delivery of medical
supplies between hospitals in a metropolis.
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For our purpose, eight hospitals in the city of Rome have been represented on the
grid, each hospital can request medicines, organs, vaccines, blood from one of the other
seven hospitals in the city. There are three UAVs, each UAV is located in a random point
on the map and has the aim of fetching the required element e.g. from hospital 1, and
deliver it in the shortest possible time, safely, to the hospital 2, taking into consideration
the priority of its mission and that of the other UAVs. The scenario, problem definition,
and proposed solution will be discussed in more detail later.

1.4 No-interference reward

In chapter 4.4 we will introduce the theoretical problem of the interference between
policies. We will provide an abstract definition of the problem, and then focus on an
instance of the problem itself, which will lead us to the definition of the thesis scenario.
We will introduce the concept of priority and explain how it will be managed, both as
regards the goal associated with the UAV, and as regards the management of the order
of hospitals visited according to a temporal priority ltlf/ldlf . In solving the problem
we will better understand the no-interference reward function and how it can help us
eliminate any interference between the agents’ policies. In the section dedicated to the
case study, we will understand how the trajectories generated by the optimal policies of
each agent will be useful for defining our no-interference reward function.

1.5 Thesis structure

The thesis is structured as follows:

• In the chapter 2, we will understand some theoretical notions that will be useful
later on. We will see in detail what Reinforcement Learning is and what temporal
formulas are through theoretical notions and examples. We will start at ltl
and then arrive at ltlf and ldlf , which we will use in our work together with
Reinforcement Learning algorithms. We will also understand the objectives of the
BUBBLES project.

• In chapter 3 we will describe the OpenAI Gym toolkit that we will use to create
our environment and we will see two works that inspired this thesis project.

• Chapter 4 the chapter of defining the problem, in this chapter, we will abstractly
define the problem, we will understand how to manage priorities and what will be
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the solution we propose. We will also go into the detail of the case study of this
thesis.

• The chapter 5 describes how the environment was created and which parameters
can be changed. It will be possible to better understand how the Restraining Bolt
manages time priorities and how the "no-interference reward" will be implemented.

• Chapter 6 presents the results obtained empirically from the implementation, we
will understand what the evaluation criteria are and compare the IV cases studied.

• The thesis is concluded in Chapter 7. This chapter summarizes also the achievements
of the thesis and discusses future works
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Chapter 2

Related Work

2.1 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning where Agent learning occurs
through rewards and punishments (Sutton and Barto, 1998). It differs from supervised
learning and unsupervised learning. In supervised learning input is provided as a labelled
data-set, a model can learn from it to provide a problem outcome. Problems can be of two
types: problem classification, regression problems. Unsupervised learning is completely
the opposite of supervised learning. This algorithm has as its primary purpose to explore
the underlying patterns and predicts the output. In RL the Agent is the learning entity,
the Agent will try to maximize the observed reward (Ng et al., 1999) by interacting
with the environment through actions. However, we need to define some very important
concepts in RL: Agent, environment, state and action. The Agent performs actions in
the environment and receives observations and rewards. The environment is the overall
representation of which the agent interacts. The Agen is not part of the environment.
The environment receives action and issues remarks and reward. The state describes the
current situation and determines what will happen next. When the Agent has a partial
view of the state, it is called observation. Action is what an agent can do in any state.
Actions allow the agent to interact with the environment. Each action performed by the
agent produces a reward from the environment. The decision of which action to choose
is made by policy. The policy is denoted by π and is the solution to an RL problem,
the policy determines which action should be executed in a given state to maximize the
long-term reward.
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Figure 2.1. Reinforcement Learning cycle

2.1.1 Exploitation & Exploration

The concept of exploration is linked to human nature. For instance, we tend to eat in a
restaurant where we experienced a good dinner rather than in a restaurant we don’t know.
In this way, however, we will never know if there is a better restaurant. Exploitation is
always doing the same action that always gets us the best value from a state (it is often
called greedy action). In exploration, the agent performs different actions in different
states to try to learn all the possibilities available and thus obtain a better reward in
the long run. The trade-off between exploitation and exploration is one of the greatest
challenges of Reinforcement Learning, to allow the Agent to explore the environment
but at the same time to exploit what she has learned and repeat the path found that
maximizes the reward.

2.1.2 On-Policy & Off-Policy

The Agent chooses the actions to be performed in each state based on a policy, but this
does not happen when the algorithm is in the learning phase. On-policy algorithms
seek to improve or evaluate the policy used to make decisions. On the contrary, unlike
off-policy algorithms that evaluate or improve a policy other than the one used to generate
the data. Two famous learning algorithms are Q-Learning and SARSA, the first is an
"On-Policy" algorithm, and the second "Off-Policy".

2.1.3 Planning & Learning

RL problems can be model-based or model-free. In a Model-based RL problem, the agent
exploring the environment tries to understand the world in which he finds himself and
then creates a model that represents it. Here the model tries to capture two functions,
the state transition function T and the reward function R to plan optimal actions. Using
this approach we are modelling our environment. In Model-free RL, the agent has no
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prior knowledge and uses the “trial-and-error” technique to obtain information. Using
this approach there is no need to have information about the environment.

2.1.4 Markov Decision Process (MDP)

Markov Decision Process is a type of mathematics model widely used in machine learning,
in this case in RL. The model determines the ideal behaviour within a specific environment.
MDP is defined by the state, model, action, reward, and finally by a policy that tries to
solve the problem. MDP is based on the property of Markov which states: "The future
is independent of the past given the present." When we know the current state, all the
past information is no longer needed, the current state is sufficient as if all history were
contained in it. In mathematical terms:

P[St+ 1 | St] = P [St+ 1 | S1, . . . ., St] (2.1)

The state captures all relevant information from history. The transition function from a

Markov state S to its successor state is defined by:

Pss′ = P
[
St+1 = s′ | St = s

]
(2.2)

It is the probability distribution that the agent given the current state has of going to
the next possible successor states.

A Markov process, also known as Markov Chain is a tuple (S, P) on state space S,
and transition function P and is a sequence of random states also called memoryless
random process.

Markov reward process

A Markov Reward Process or MRP is a tuple (S, P,R, γ) where S represents finite states,
P is the state transition probability function, R is a reward function. R is defined as
follows:

Rs = E[Rt+ 1 | St = S] (2.3)

Indicate at this time how much immediate reward we expect to get.
The γ discount factor greatly influences the MDP, it informs the agent how much to

worry about future rewards. The γ can vary between 0 and 1 (γ ∈ [0, 1]), the higher the
discount factor the longer the visual horizon of the agent. If γ < 1 the agent will try to
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get rewards as quickly as possible we are therefore in the finite horizon setting. If γ = 1
the agent will try to get the rewards regardless of time, as if it were immortal, in this
case, the setting will be infinite horizon. In case γ = 0 the setting is greedy, the agent is
short-sighted and only looks at the possible reward he could get by performing a single
action.

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1 (2.4)

Where γ is between 0 and 1 (γ ∈ [0, 1]) The discounted return is indicated with Gt
and is the total of the prizes discounted in a given time step t and Rt+1, Rt+2, . . . , RT is
the sequence of reward.

Bellman Equation

In order to get the sum of the cumulative rewards, we can use Bellman’s equation.
Bellman’s equation is defined as follows:

vπ(S) = Eπ (Rt+1 + γvπ (St+1) | St = S) (2.5)

If we use Bellman’s equation, we can break the value function into two parts; a discounted
value of the next state γV (St + 1) and an immediate reward Rt + 1.

State-value function vρ(s):

vρ(s) := Eρ[Gt|St = s],∀s ∈ S (2.6)

therefore:

= E
[
Rt+1 + γRt+2 + γ2Rt+3 + . . . | St = s

]
= E [Rt+1 + γ (Rt+2 + γRt+3 + . . .) | St = s]

(2.7)

Now starting from the time step t + 1, we replace the return Gt +1.

Action-value function for policy ρ:

qρ(s, a) := Eρ[Gt|St = s,At = a], ,∀s ∈ S, ∀a ∈ A (2.8)

Definition 2.1. An optimal policy ρ∗ is a policy such that ρ∗ ≥ ρ for all ρ.

A typical reinforcement learning problem is finding the optimal policy for MDP
without knowing the transaction function and the reward. It is possible not to specify



2.1 Reinforcement Learning 9

the transition probabilities and the rewards but to access it through a simulator that is
restarted many times from a uniformly random state s0 ∈ S or a fixed state.

This modelling of the learning process is called episodic reinforcement learning. For
the MDP simulation to end, the presence of one or more goal states is required, in which
the activity is considered completed or a maximum time limit for the number of actions
that the agent can perform in a single episode, so when the time is greater than the
maximum time (t > T ) the episode ends. It is possible to define a failure states, where
the episode ends and the activity is considered failed.

Examples

Many dynamic systems can be modeled as Markov Decision Processes.

Example 2.1 (Gridworld). A very simple example of MDP is Gridworld shown in the
figure. The agent can perform four actions: A = {Right, Left, Up,Down} and moves
into a grid environment made up of 4× 5 cells. The agent starts from a fixed initial state
s0 = s11, from the current state the agent can move to one of the adjacent free cells. The
goal is to reach the state s45 considering an episodic task, while s35 represents a failure
state. The actions can be deterministic or non-deterministic, in the first case, we can get
the best action at each state by following the highest estimate, in case the actions are
non-deterministic (as happens in the real situation) the agent will not always go to the
position he hopes to go to, i.e. the effect of an action is determined by the probabilistic
distribution returned by T (s, a).

Figure 2.2. The Gridworld environment
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Figure 2.3. An example of optimal policy for the Gridworld environment

If the action the agent chooses causes him to hit a wall (borders of the grid and s22,
s32, s32, s33, s35), the agent stays where it was. The reward function R(s, a, s′) is defined
as 1 if the agent gets to s′ = s45, like −1 if s′ = s35 so if it fails, and −0.01 otherwise.
The −0.01 reward called step reward is widely used to encourage the agent to finish the
episode as soon as possible. Since it takes multiple steps to reach the goal, the γ discount
factor should be greater than 0.

After several episodes, you will get an optimal policy such as the one shown in Figure
2.3. The optimal action of the state s14, is not to go up (shortest path) but to go left.
This is to prevent the agent from ending up in the s25 state of error, even if the probability
is very low. So the agent prefers to take a lot of small negative rewards, rather than
getting a large negative reward equivalent to failure.

2.1.5 RL ‘Learning’ algorithm

The Reinforcement Learning algorithms can be divided into 3 categories: Value-Based,
Policy-Based, Actor-Critic; it is also possible to divide the different models according to
on-policy or off-policy.

Q-Learning

The Q-learning algorithm is one of the best known Reinforcement Learning algorithms.
It is part of the "Value-Based" category of algorithms and is off-policy. Let’s imagine the
scenario in which a drone starting from a point on the map must cross the whole map to
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Figure 2.4. Optimal policy for the Gridworld environment

reach its goal. The allowed movements of the drone are: A = {Right, Left, Up,Down},
if the drone hits an obstacle, the agent is given a negative reward of 100 points and
the game fails. If the drone passes over a charging station it gains power, so it earns 1
point. In case the drone reaches the final goal it gets 100 points. The goal is to reach
the final goal in the shortest possible time, without hitting an obstacle, to solve this
problem the first step is to create a Q-Table. The Q-Table is a table that follows the
form of [state, action], our Q-table is made up of 5 rows and 4 columns and we have 4
actions for each state (5x4x4). Initially, the Q-table has all values initialized to 0, after a
certain amount of episodes, it ultimately finds the best state-action pairs Q(s, a) for the
algorithm, the so-called ”Q-values". This q-table becomes a reference table for our agent
to select the best action based on the q-value. The Agent interacts with the environment
in two ways: "exploitation", "explore", we have already defined what it means in chapter
2.1.1.

Our drone initially knows nothing of the environment, so it will choose actions
randomly, as the UAV explores the environment the epsilon rate decreases and the drone
begins to exploit the environment. When the Q-tables is ready, the agent will begin to
take the best actions, as we can see in Figure 2.4 the drone begins its path by moving
upwards s21 and not to the left s12 which is an equivalent path, this is because along the
path taken there is a charging station s33 where he will earn an additional reward.
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Here’s how our Q-table is updated at each time step t:

Q(st, at) = Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

×

×


learned value︷ ︸︸ ︷

rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

max
a

Q(st+1, a)︸ ︷︷ ︸
estimate of optimal future value

−Q(st, at)︸ ︷︷ ︸
old value


(2.9)

where:

• α ∈ [0, 1] is the learning rate, a coefficient that regulates how much the newly
learned values will contribute in the update

• γ ∈ [0, 1] is the discount factor, a coefficient that controls the weight of future
rewards. Values closer to 0 will make our agent "short-sighted", considering only
the immediate rewards.

Then the algorithm is the following:

Algorithm 2.1 Watkin’s Q(λ) (Watkins, 1989)
Require:
1: S is a set of states
2: A is a set of actions
3: γ the discount reward factor
4: α is the learning rate
5: n is number of episodes to run Q-learning
6: ε, probability to take random action, rather than follow policy
7: procedure Q-learning
8: Initialize Q(s, a) will all 0 utility values.
9: for each episode ei with i = 0...n do

10: Initialize s
11: for each step of episode do
12: Choose at from st using policy derived from Q with ε-Greedy
13: Take action at, observe reward r and st+1

14: Update Q-table using equation 2.9
15: end for
16: end for
17: end procedure
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After a fixed number of steps or after a final state each episode converges. The action
choice in Step 12 uses the exploration/exploitation policy (function) EEP (st, Qt, S,A)
that is defined as follows:

EEP (st, Qt, S,A) = at =


argmax

a∈A
Qt(st, at) exploitation with probability 1− ε

random(a)
a∈A

exploration with probability ε

The above EEP function implements a policy denoted as the “greedy policy” where ε is
often chosen as a small probability (i.e., 0.05).

SARSA Algorithm

SARSA like Q-Learning is part of the Value Based algorithm category, but unlike Q-
Learning it is an on-policy algorithm. The name SARSA derives from its modus operandi,
the agent passes from a pair of state-action values to another pair of state-action values
and along the way collects the reward R (so its the S (t ), A (t), R (t + 1), S (t + 1)
& A (t + 1) tuple that creates the term S,A,R, S,A). The main difference between
SARSA and Q-learning (Watkins and Dayan, 1992) is that Q-learning uses the Q over all
possible actions for the next step; while SARSA uses Q by executing an ε-greedy policy,
as action A is selected by it.
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Algorithm 2.2 Sarsa(λ) (Singh and Sutton, 1996)
1: Initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a
2: for each episode do
3: initialize s
4: Choose a from s using policy derived from Q (e.g. e-greedy)
5: for each iteration step do
6: Take action a, observe reward r and new state s′

7: Choose a′ from s′ using policy derived from Q

8: δ ← r + γQ(s′, a′)−Q(s, a)
9: e(s, a)← 1 . replacing traces

10: for all s, a do
11: Q(s, a)← Q(s, a) + αδe(s, a)
12: e(s, a)← γλe(s, a)
13: end for
14: s← s′, a← a′

15: end for state s is terminal
16: end for

2.2 ltlf and ldlf

In this section, we will describe what ltlf/ldlf and ldlf formulas are, what they are
for, and the fields in which they are used. Understanding the utility of these formulas is
very important because we will use them to define the goal of our RL environment.

2.2.1 Linear-Time Temporal Logic (LTL)

A Linear-Time Temporal Logic formula (ltl) (Pnueli, 1977), is an extension of modal
logic and allows to express of temporal patterns on some p properties. It is the most
famous temporal logic and is often used in various fields, such as AI, in the verification
of software and hardware systems, by companies to verify their processes and specify
them declaratively.

Very often LTL formulas are used to express properties and constraints on finite
traces of actions/states, this can be done even if the standard semantics of LTL are
defined on infinite traces.
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Syntax

An LTL formula is defined by a finite set of P symbols and are closed under the boolean
connectives, the unary temporal operator, the unary temporal operator ◦(next-time)
and the binary operator U (until):

ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2

Boolean abbreviations such as: ∨,⇒,⇔, true, false and temporal formulas like eventually
as ♦ϕ .= true U ϕ, always as �ϕ .= ¬♦¬ϕ and release as ϕ1Rϕ2

.= ¬(¬ϕ1 U ¬ϕ2).

Example 2.2. Several interesting temporal properties can be defined in ltl:

• Liveness: ♦ϕ, which means "condition expressed by ϕ at some time in the future
will be satisfied", "sooner or later ϕ will hold" or "eventually ϕ will hold". E.g.,
♦famous (eventually I will become famous), Request =⇒ ♦Response (if someone
requested the service, sooner or later he will receive a response).

• Safety: �ϕ, which means "condition expressed by ϕ, every time in the future will be
satisfied", "always ϕ will hold". E.g., �happy (I’m always happy), �¬(temperature >
25) (the temperature of the room must never be over 25).

• Response: �♦ϕ which means "at any instant of time there exists a moment later
where ϕ holds". This temporal pattern is known in computer science as fairness.

• Persistence: ♦�ϕ, which stand for "There exists a moment in the future such that
from then on ϕ always holds". E.g. ♦�detachedapple (at some point the apple will
detach from the tree and will be detached forever.)

• Strong fairness: �♦ϕ1 =⇒ �♦ϕ2, "if something is attempted/requested infinitely
often, then it will be successful/allocated infinitely often". E.g., �♦ready =⇒
�♦run (if a process is in ready state infinitely often, then infinitely often it will be
selected by the scheduler).

2.2.2 Linear Temporal Logic on Finite Traces (ltlf)

The ltlf formulas are based on a finite sequence of instants (De Giacomo and Vardi,
2013), so on finite tracks instead of infinite tracks as in ltl. However, this small difference
has a great impact on the interpretation of the meaning of the formulas. The syntax is
the same as the ltl formulas (Pnueli, 1977) and also the ltlf formulas are defined by a
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finite set of symbols P and are closed under the boolean connectives, the unary temporal
operator, the unary temporal operator ◦(next-time) and the binary operator U (until):

ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2

A: atomic propositions
¬ϕ, ϕ1 ∧ ϕ2: boolean connectives
◦ϕ "next step exists and at next step (of the trace) ϕ holds”
ϕ1 U ϕ2:“eventually ϕ2 holds, and ϕ1 holds until ϕ2 does”

With A ∈ P.

ϕ1 ∨ ϕ2
.= ¬(¬ϕ1 ∧ ¬ϕ2)

ϕ1 ⇒ ϕ2
.= ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2
.= ϕ1 ⇒ ϕ2 ∧ ϕ2 ⇒ ϕ1

true .= ¬ϕ ∨ ϕ
false .= ¬ϕ ∧ ϕ

And for temporal formulas:

ϕ1Rϕ2
.= ¬(¬ϕ1 U ¬ϕ2) (2.10)

♦ϕ
.= true U ϕ (2.11)

�ϕ
.= ¬♦¬ϕ (2.12)

•ϕ .= ¬◦¬ϕ (2.13)

Last .= •false (2.14)

End .= �false (2.15)

Formula: (2.11) ♦ϕ .= true U ϕ : "ϕ will eventually hold"
Formula: (2.12) �ϕ .= ¬♦¬ϕ "from current till last instant ϕ will always hold"
Formula: (2.13) •ϕ .= ¬◦¬ϕ "if next step exists then at next step ϕ holds" (weak next)
Formula: (2.14) Last .= •false denotes last instant of trace.
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Semantics

A finite track is a finite word on the alphabet 2P . Notice that, a trace π can be seen
as a word on a path of a Kripke structure. (Clarke et al. (1999)) We use the following
notation. We denote the length of a trace π as length(π). We denote the ith position on
the trace as π(i) = L(si), i.e. the propositions that hold in the ith state of the path, with
0 ≤ i ≤ last where last = length(π) − 1 is the last element of the trace. We denote by
π(i, j), the segment obtained from π, starting from position i and terminating in position
π(j), with 0 ≤ i ≤ j ≤ last

Definition 2.2. Given an LTf -interpretation π, we define that a ltlf formula ϕ is true
at time i (0 ≤ i ≤ last), in symbols π, i |= ϕ as follows:

π, i |= A, for A ∈ P iff A ∈ π(i)

π, i |= ¬ϕ iff π, i 6|= ϕ

π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 ∧ π, i |= ϕ2

π, i |= ◦ϕ iff i < last ∧ π, i+ 1 |= ϕ (2.16)

π, i |= ϕ1 U ϕ2 iff ∃j.(i ≤ j ≤ last) ∧ π, j |= ϕ∧

∀k.(i ≤ k < j)⇒ π, k |= ϕ1 (2.17)

Theorem 2.1 (De Giacomo and Vardi (2013)). Satisfiability, validity and entailment
for ltlf formulas are pspace-complete.

Theorem 2.2 (De Giacomo and Vardi (2013); Gabbay et al. (1997)). ltlf has the same
expressive power of fol over finite ordered sequences.

As we can see from the two previous theorems the ltlf formulas have the same
expressive power as FOL and have a satisfiability for pspace-hardness.

2.2.3 Linear Dynamic Logic on Finite Traces (ldlf)

ldlf (De Giacomo and Vardi, 2013) has the same decorativeness as ltlf which is merged
with the expressiveness of ref but using the syntax of pdl (Fischer and Ladner, 1979), a
(propositional) logic often used in computer programs. ref is much more expressive than
ltlf but it is a very low-level formal consideration for temporal logics, this is because
there is no direct construct for negation and conjunction.
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Syntax

Formally, ldlf formulas ϕ are built over a set of propositional symbols P as follows
(Brafman et al., 2017):

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈%〉ϕ
% ::= φ | ϕ? | %1 + %2 | %1; %2 | %∗

• tt and false stand for true and false

• φ: propositional formula on current state/instant

• ¬ϕ, ϕ1 ∧ ϕ2: boolean connectives

• % is a regular expression on propositional formulas

• 〈%〉ϕ: exists an “execution” of ref % that ends with ϕ holding

• [%]ϕ: all “executions” of ref (along the trace!) end with ϕ holding

For classical logical operators we use these abbreviations:

ϕ1 ∨ ϕ2
.= ¬(¬ϕ1 ∧ ¬ϕ2)

ϕ1 ⇒ ϕ2
.= ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2
.= ϕ1 ⇒ ϕ2 ∧ ϕ2 ⇒ ϕ1

ff .= ¬tt

And for temporal formulas:

[%]ϕ .= ¬〈%〉¬ϕ (2.18)
End .= [true]ff (2.19)
Last .= 〈true〉End (2.20)

(2.18) [%]ϕ and 〈%〉ϕ are correspond to the box and diamond analogues in ltl.
(2.19) It means that the trace is finished.
(2.20) Denotes the last element of the track.

Semantics

Let us now formally see the semantics for ldlf .
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Definition 2.3. Given a finite trace π, we define that a ldlf formula ϕ is true at time
i (0 ≤ i ≤ last), in symbols π, i |= ϕ inductively as follows:

π, i |= tt

π, i |= ¬ϕ iff π, i 6|= ϕ

π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 ∧ π, i |= ϕ2

π, i |= 〈φ〉ϕ iff i < last ∧ π(i) |= φ ∧ π, i+ 1 |= ϕ

π, i |= 〈ψ?〉ϕ iff π, i |= ψ ∧ π, i |= ϕ

π, i |= 〈%1 + %2〉ϕ iff π, i |= 〈%1〉ϕ ∨ 〈%2〉ϕ

π, i |= 〈%1; %2〉ϕ iff π, i |= 〈%1〉〈%2〉ϕ

π, i |= 〈%∗〉ϕ iff π, i |= ϕ ∨ i < last ∧ π, i |= 〈%〉〈%∗〉ϕ and % is not test-only

Now let’s compare the ltlf formulas with the corresponding ltlf formulas:

ltlf ldlf

A 〈A〉tt

¬ϕ ¬ϕ

ϕ1 ∧ ϕ2 ϕ1 ∧ ϕ2

◦ϕ 〈true〉(ϕ ∧ ¬End)

ϕ1 U ϕ 〈(ϕ1?; true)∗〉(ϕ2 ∧ ¬End)

Theorem 2.3 (De Giacomo and Vardi (2013)). ldlf has exactly the same expressive
power of mso

2.3 Reinforcement Learning with ltlf and ldlf

In the previous paragraphs, we have understood what Reinforcement Learning is and
what ldlf and ltlf formulas are. In this section, we will understand how we can use
both of them to solve different types of problems. In our thesis project in particular
in our environment in addition to the agent, there is another fundamental component
that allows us to manage priorities through the ldlf and ltlf formulas, this is called
Restraining Bolt (De Giacomo et al., 2019). The Restraining Bolt as in the sci-fi movie
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Star-wars is something that limits the actions of the droid, similarly, our RB will limit
the actions of our agent. The agent learns in the environment about a set of low-level
(sub-symbolic) characteristics to achieve its goals, but while this happens the RB limits its
actions to high-level restrictive specifications established by the ltlf and ldlf formulas.
The goal is for the agent to comply as closely as possible with the restrictive specifications
of the RB. The world model is a Markov decision-making process (MDP), hidden and
factored on a certain set of (sub-symbolic) world characteristics. The agent state is made
up of observable characteristics, while the transition function and the reward function
are hidden. There are therefore two distinct sets of characteristics, one set for the agent
and another for the RB, which are not related but are related by the world itself (Brooks,
1991). To make RB work well with a Reinforcement Learning agent there is no need to

Figure 2.5. Learning Agent and Restraining Bolt

formalize these correlations. If everything happens correctly the agent’s objectives will
be met and the restrictions given by the ltlf/ldlf formulas will not be violated.

The ltlf and ldlf formulas can be transformed into deterministic finite state
automata (De Giacomo and Vardi, 2013). This allows to transform an NMRDP problem
with non-Markovian ltlf/ldlf rewards into an MDP, with an extended state space,
obtained as a product of the states of the automaton with the states of the NMRDP.

2.3.1 RL with Restraining Bolts

• We have: An agent and a MDP modelMag = 〈S,A, T,R, γ〉 with Trag and Rag
hidden but sampled from the environment.

• A restraining bolt RB = 〈L, {(ϕi, ri)}mi=1〉 where:
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– L = 2F L is the set of characteristics of fluents. Analogous to S which denotes
the set of features available for Mag.The fluents F do not continue to form
the S states of the agent Mag.

– {(ϕi, ri)}mi=1 is a set of restraining specifications with ∗ϕ, an ltlf/ldlf formula
over F . ∗ri, the reward associated with ϕi. A reward ri is assigned to sequences
of configurations `1, · · · , `n satisfying ϕi.

From a formula ϕ we get a corresponding formula DFA Aϕi =
〈

2P , Qi, qi0, δi, Fi
〉
. The

agent does not see the configurations of the fluents and due to the non-Markov nature
the agent does not see the rewards coming from the RB. We therefore provide the
agent with further observable characteristics Q1 × . . . × Qm, which correspond to the
satisfaction states of the formulas ϕ1 . . . ϕm. A solution to the problem M rb

ag is a (possibly
non-Markovian) policy ρ̄ : (Q1 × . . .×Qm × S)∗ → A that maximizes the expected
cumulative reward.

1. For every ϕi, compute the equivalent DFA Aϕi (De Giacomo and Vardi, 2013)

2. Do RL on the MDPM q
ag = 〈Q1 × · · · ×Qm× S,A, Tr′ag, R

′
ag

〉
where:

• The transition distributionTr′ag is unknown;
• The rewardR′ag, unknown to the agent, is defined as:

R′ag
(
q1, . . . , qm, s, a, q

′
1, . . . , q

′
m, s

′) =
∑

i:q′
i∈Fi

ri +Rag
(
s, a, s′

)
(2.21)

• The states qi of the DFAs Aϕi are progressed correctly by the environment.

This is a possible solution for Markov’s policies of the form (Q1 × . . .×Qm × S)→ A.
It is possible to find another possible solution with the following theorem:

Theorem 1. RL with LTLf/LDLf restraining specifications M rb
aq = 〈Mag, RB〉 with

Mag = 〈S,A, Trag, Rag〉 and RB = 〈L, {(ϕi, ri)}mi=1〉 can be reduced to RL over the MDP
M q
ag =

〈
Q1 × · · · ×Qm × S,A, Tr′ag, R′ag

〉
and optimal policies ρnewa g for M rb

a g can be
learned by learning corresponding optimal policies for M q

ag.
Proof. see (De Giacomo et al., 2020).

2.4 BUBBLES Project

The scenario of this thesis project was inspired in some way by the BUBBLES project.
BUBBLES is a project funded by the European community, coordinated by public and
private bodies. The BUBBLES consortium includes three academic partners:
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• Universitat Politècnica de València (UPV): UPV is the coordinator of the project,
deals with the separation of ConOps and OSED / SPR / INTEROP, and is
coordinated by Professor Juan Vicente Balbastr.

• Universidade de Coimbra (UC): UC deals with the communication-related aspects
of ConOps separation management, coordinated by Professor Henrique Madeira.

• University of La Sapienza in Rome (UNIROMA1): The DIAG is responsible for
applying Artificial Intelligence methods to the separation management ConOps
and is coordinated by Professor Luca Iocchi.

The other two partners are:

• EUROCONTROL: it is participating in the ConOps definition and validation by
simulation, as well as in performing Performance and Safety Operational Assess-
ments.

• Indra Sistemas S.A. (Indra): Indra is responsible for defining scenarios supporting
the ConOps definition and participates in the concept of experimental validation.

2.4.1 BUBBLES objectives

The BUBBLES project aims to define U-space services, this will allow the operation of a
large number of drones without interfering in any way with manned aviation. In manned
aviation there is a very low accident rate (less than 3 per million departures), this high
safety is due to the CNS concept, first introduced by ICAO for PBN in 1998. However,
U-space services for UAS are still being defined, especially those (U3). According to the
SESAR organization, more than 450,000 UAS will be expected to fly in the airspace
VLL (Very Low Level) SES (below 150 m), for this reason, it is important to improve
safety and efficiency by introducing advanced services. The BUBBLE project will manage
this concept of UAS separation management in U space through artificial intelligence
(AI) based algorithms to calculate the collision risk between UAS leading to minimal
separation and methods to maintain a target level of security (TLS). These algorithms
will be applied to a series of generic ConOps and will be classified in terms of risk
using the SORA (Specific Operations Risk Assessment) methodology. SORA is a risk
assessment process of some unmanned aircraft operations, divided into several assessment
phases. In the BUBBLES project, the concepts of collision and conflict are used, two
concepts that may seem similar but are different. Conflict is when the distance between
two or more UAVs can general in the future a potential collision, by collision we mean
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the physical impact of a drone against some static physical structure or a moving object.
Such concepts will often be used in defining issues and scenarios in this thesis project.
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Chapter 3

Background

3.1 OpenAI Gym

OpenAI Gym is an open-source toolkit for the development and comparison of Reinforce-
ment Learning algorithms, Gym is based on Python and is compatible with all numerical
computation libraries such as TensorFlow and Theano.

Gym was publicly released in 2016 by the non-profit organization OpenAI, founded
by Elon Musk and Sam Altman in 2015 based in San Francisco.

Gym’s goal is to offer a benchmark for reinforcement learning that is easy to use and
implement, with a large variety of different but similar environments. It is possible to
use either predefined environments for known problems such as "MountainCar" or it is
possible to create a new environment from scratch, as has been done for our framework.
Another goal of the OpenaAI Gym library is to standardize how environments are defined
in scientific articles, a bit like it happens for ImageNet, CIFAR that make available large
quantities of labelled data to make progress in the field of scientific research.

Let’s now see an example of implementation of the famous Gym environment Moun-
tainCar. First, we will name the environment, we call it Car_v0. Five important Python
commands are common in all Gym environments.

• gym.make(EnvironmentName) creates the environment, you can choose known
environments present on the site and on the OpenAI Gym GitHub repository or
you can create a new environment from scratch.

• env.reset(): this command is used to reset the environment and initialize it at the
first observation.

• The for t in range (5000): loop executes an instance of the Car_v0 environment
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for 5000 iterations, rendering at each pass,

• env.render(): in this way, being inside the loop, after each iteration a pop-up
window will open which will graphically reproduce the problem.

• env.step(): in our code this command will perform an action at each step. In
general env.step() returns four parameters which are: observation, reward, done
and information.

Listing 3.1. MountainCar

 import gym
 env = gym.make(’Cart_v0’)
 for i_episode in range(20):
 observation = env.reset()
 for t in range(5000):
 env.render()
 print(observation)
 action = env.action_space.sample()
 observation, reward, done, info = env.step(action)

 if done:
 print("Episode␣finished␣after␣{}␣timesteps".format(t+1))
 break
 env.close()

Figure 3.1. MountainCar Environment

Let’s now understand what these four values are returned by the "step" command.
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• observation(object): The observation is a specific object that represents the ob-
servation of the environment, it could be, for example, the speed and the angle of
curvature of a car, the pixel data of a camera, or the state of the board of a board
game.

• reward(float): The reward is the reward obtained from the previous action carried
out by the agent, it can be positive or negative and the goal is to maximize this
reward.

• done(boolean): If done is set to true, it allows the episode to end. For example,
two UAVs collide, so done is True and the episode ends.

• info: Sometimes it can contain raw probabilities after the last change of state of
the environment, it can be useful for debugging. However, the agent cannot use
any of this information.

Figure 3.2. Agent-Environment loop

At each time step, the agent performs an action and then observation and a reward are
returned.

As we see in the picture, our car must reach the top of the hill. We have three discrete
actions: push left: 0, no push: 1, push right: 2. The observations are instead of the box
type since the environment is discrete and are position and speed. The reward is -1 for
each time phase until the target position is reached. To reach the target position the car
must take a run, then push left and right until the car has enough momentum to reach
the flag.

3.2 MultiUAV-OpenAIGym and gym-sapientino

In addition to the EU SESAR BUBBLES project that inspired my thesis scenario, two
other projects influenced the development of this thesis work. Some components of these
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works will be used, such as the restraining bolt, to specify ltlf/ldlf time formulas.
These two works are MultiUAV-OpenAIGym and gym-sapientino.

3.2.1 MultiUAV-OpenAIGym

It is an environment written in python based on the OpenAi-Gym framework, which is
extended to obtain a multipurpose environment for UAVs. In MultiUAV-OpenAIGym
(Brunori, 2020) policies are generated through Reinforcement Learning for autonomous
multi-drone systems in multi-service applications. The available RL algorithms are
SARSA and Q-Learning, with which it is possible to find policies for each agent. The
UAVs present in the environment provide network or mobile computing services to users.
The goal is to make UAVs learn, through reinforcement learning, how to provide these
services, maximizing the quality of experience (QoE).

Adopted notation

The notations adopted in MultiUAV-OpenAIGym are the following:

Parameters Notation

Number of UAVs N

Number of Charging Stations M

Number of Users U

Number of Users Clusters C

Number of Users in the i-th Cluster UCi

Number of Covered Users UCi

Needed Battery for the i-th UAV to get to the elosest CS Bi

j-th Reward Structure for i-th UAV BWi

Remaining Bandwidth of the i-th UAV critical i

i-th Critical Battery level needed Bi

Maximum extension along Y axis for the planar xy-grid map Ri
j

Maximum extension along X axis for planar xy-grid map L

Maximum extension along Z axis for 3D map W

Table 3.1. Used notation for the for the environment parameters.

Framework settings

There are several settings supported by this framework, such as choosing the desired
resolution for the cells, deciding whether to consider an environment with coordinates
(x, y) then 2D or 3D (x, y, z), how many drones to fly and at what time interval t must
start.
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It is possible to randomly generate buildings by setting a percentage of obstacles
for the entire operating volume, it is also possible to choose a maximum height of the
obstacle/building, in this way obstacles with different heights will be generated.

It is possible general of the centroids in which to distribute users, using a normal dis-
tribution. The service requested by users can be defined as (throughput, edge computing
or data collection).

Charging stations (CS) can be inserted into the environment, equidistant from each
other, where the drones can go to recharge to continue providing their services.

Figure 3.3. Multi-Service_UAV: on the left is represented the 2D grid-map view, while on the
left is shown the 3D view

Reward Functions

Now let’s see in detail the three reward functions implemented. As the constraints of the
problem and the training parameters vary, the reward function changes.

Ri1 = Uc

Û
, where Û = U

N
(3.1)

Ri2 = wsru + wcrc (3.2)

where:



30 3. Background

ws,c =




1.0
s

0.0
c

if Bi > critical1


0.8
s

0.2
c

if (critical1 < Bi ≤ critical1) ∧ (Bi > neededBi)


0.5
s

0.5
c

if (critical3 < Bi ≤ critical2) ∧ (Bi > neededBi)


0.2
s

0.8
c

if (critical4 < Bi ≤ critical3) ∧ (Bi > neededBi)


0.0
s

1.0
c

otherwise, i.e. if Bi ≤ neededBi

(3.3)

with ru computed as in (3.1) and the reward cost equals to:

rc = nedeedBi

Bi
(3.4)

A third reward function is computed as:

Ri3 = ws (wuru + wtrstr + wecsec + wdgsdg) + wc(rcp + rcs) (3.5)

wu, wtr, wec, wdg are the weights corresponding respectively to the percentage of:

• covered users (regardless of the service requested);

• covered throughput requests;

• covered edge computing requests;

• covered data gathering requests.
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3.2.2 Gym-sapientino

Gym-sapientino (Favorito, 2018) is a framework developed in python, like MultiUAV-
OpenAIGym it is also based on the OpenAI Gym framework. As the name suggests, the
framework is inspired by the Sapientino educational game, for children aged (5-8). In
this environment, the real game is simulated, where there is a mobile robot that has to
visit specific cells. Cells contain concepts that must be matched by the children (e.g., a
coloured animal, a colour, and the initial letter of the name of the animal). The robot
has to move and visit a sequence of cells in a 5x7 grid, when the robot reaches the cell it
has to visit, it signals it with a beep.

Figure 3.4. A screenshot from gym-sapientino

The agent can perform several actions which are: (up, down, left, right) and bip.
The characteristics for the agent space are the agent’s (x, y) position in the grid, that is,
fx and fy. The configurations of the fluids are evaluated through features, which are: fb
which reports whether a bip has just been executed, and fc which denotes the colour of
the current cell. In the default settings, the available fluents are:

P = {beep, red, green, blue, pink, brown, gray, purple}

just map features to fluents one-to-one.
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Framework settings

In gym-sapientino the algorithm used to find the agent’s policy is SARSA (λ) (e.g. Sarsa
with eligibility traces) (Singh and Sutton, 1996) with ε-greedy policy. The training
parameters are set as follows:

• λ = 0

• γ = 1.0

• α = 0.1

• ε = 0.1

Temporal Goal

The time formula set by default and used for the experiment is a ldlf formula:

〈true∗; red ∧ bip; true∗; green ∧ bip;
true∗; blue ∧ bip; true∗; pink ∧ bip;
true∗; brown ∧ bip; true∗; grey ∧ bip;
true∗; purple ∧ bip〉tt (3.6)

Visit each colour and do a bip in each colour in a given order
To perform this experiment, (5000) episodes were performed. The illegal beep was

punished with a negative reward. In this way the agent recognizes, earlier than no reward
shaping configuration , that the illegal bip is a bad action.

Restraining bolt

In this environment was introduced the concept of the Restraining bolt which manages
the time specifications. Several experiments have been made with different time formulas
in this case we see a ltl formula implemented.

¬bipU (Vj=1,2,3 cellC1,j ∧ bip )∧∧
j=1,2,3 � (cellC1,j ∧bip→ ◦� (bip→ ¬ cellC1,j))∧∨
j=1,2,3 �

(
cellC1,j ∧bip→ ◦

(
¬bipU ∨k 6=j cellC1,k ∧ bip

)
This ltl formula specifies that the agent must visit at least two cells of the same

colour for each colour in a given order (the colour order is predefined: first C1, then C2,
and so on).
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Figure 3.5. The automaton associated to the ldlf formula in Equation 3.6

Figure 3.6. Sapientino S2 OMNI (3 minutes)
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Chapter 4

Problems Definition

In this chapter, we provide an abstract definition of the problem and then focus on
an instance of the problem that led us to the definition of the scenario of the thesis.
We consider a set of reinforcement learning agents, where each agent has its own goal
and they all operate in a shared environment. The goal of this thesis work is to find
policies that are both optimal for each agent to achieve their goal and ensure a very low
probability of conflict, thus minimizing the possibility of interference between the policies
of one or more agents.

More formally, the considered problem can be described in terms of the following
elements.

• A world W (for example an environment, a room, a video game). Let W be the set
of world states, i.e. the states of the world W .

• A = {α1, . . . , αn} is the set of agents, each agent αi has a set of possible actions Ai
and a set of states Si. δi : Si ×Ai → Si (or a probability distribution P (s′ | s, a))
and an initial state s0

i ∈ Si

• Each agent αi has a goal Mi, withM = {M1, . . . ,Mm} being the set of tasks and
f : A →M a function assigning one task to each agent.

• Each agent αi generates a trajectory Ti representing the sequence of states crossed
during the execution of the optimal policy.

• The goal for each agent αi is to find an optimal policy that will produce a trajectory
τi, ensuring a minimal risk of conflict.
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• The frequency of the conflict for two trajectories are obtained by multiplying the
frequency of the encounters in two points by the probability that these two points
are within the conflict threshold, i.e.

Fconflict (τi, τj) = min (fi, fj) Pr (|xi − xj | < δ)

where τi and τj are two trajectories of two agents αi, αj , with i 6= j. fi and fj are
the frequency of the trajectory (fi = 1

Ti
). On the trajectories ti and tj we have

respectively the points xi ∈ τi and xj ∈ τj which represent two agents.

The frequency of the event in which the two agents are in a given position xi and
xj is determined by the minimum frequency, i.e. min(fi, fj), while δ indicates the
conflict threshold that is the distance within which a conflict is detected.

4.1 Assumptions and Scenario Overview

In this thesis, we will focus on an instance of this abstract problem to define our scenario.

• A Scenario S = 〈A,M,RB〉 is a tuple containing a set of agents A, agents modeled
by MDPM, a set of RB (Restraining Bolts) that will define the behaviours of the
agents A.

• A = {α1, . . . , αn} is a set of UAV agents, each agent αi is modeled by the MDP
modelMagi

= 〈Si, Ai, T ragi
, Ragi

, γ〉 with Tragi
and Ragi

hidden but sampled from
the environment.

– We assume a global clock, which measures the time during the evolution of
the scenario for each agent αi, from 0 to T.
Let’s consider a set of asynchronous goals, in which each agent can decide
to execute its task at any time independently from the other agents. Each
agent does not know where the other agents are at any given instant of time.
The agent can interact with W by executing actions Ai and cannot directly
communicate or perceive other agents.

– Let’s assume the learning agent has a special action stop which deems the end
of an episode. The agent can do action a, at every clock and observe both the
new state s from the new world state w′, namely s = fag(w), and a real-valued
reward R(s, a, s′), that depends only from the transition s→a s

′.
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– We also assume that the state transition function (Tragi
) is Markovian, so the

next state s′ depends only on the current state s and the action taken a.

• Each agent αi has a goal (ϕi, Pi), where ϕi is the formula ltlf/ldlf to be satisfied
and Pi is a non-negative integer denoting the priority associated with the goal
described by ϕi. Pi ∈ Z0+, in which the value 0 represents the highest priority.
The assignment of agents αi to goals ϕi with priorities Pi forms a list AP of agents
sorted by goal priorities (from highest to lowest).

In general, to provide a high-level description of the world we can consider a
ltlf/ldlf formula ϕi (i = 1, . . . ,m) over a set of fluents F . Fluents in F are not
among the features that form the states S of the learning agent αi. We denote by
L = 2F the set of possible fluent configurations.

• The behaviour of each UAV is learned through reinforcement learning with Re-
straining Bolts. Each agent αi has a RBi, which gives positive or negative rewards
whether the ltlf/ldlf formula is met or not.

More formally, RB = {RB1, . . . , RBm} is the set of Restraining Bolts augmented
with a priority value Pi. Each agent αi is associated to RBi = 〈 L, (ϕi, ri, Pi)〉,
where L is the set of possible fluent configurations shared among all agents, ϕi is
a ltlf/ldlf formula over L, ri is the reward associated with ϕi, and Pi is the
priority of the goal described by this RB. During the learning process, the agent
receives the rewards from both RBi and from Ragi

.

Note that the number of agents αi may differ from the number of Restraining
Bolts RBi (n 6= m). There is no one-to-one association between agents αi and
Restraining Bolt RBi , but it is possible to have scenarios where one or more RBi
are not assigned to any agent αi or scenarios where the same RBi is duplicated on
one or more agents αi. For example, if two agents have to perform the same mission,
both agents will have two copies of the same RB, while if an RB is not associated
with an agent, it means that no agent is carrying out the mission associated with
that RB.

While in the original article (De Giacomo et al., 2019), RB goals were formally
defined with a set of formulas, in this thesis we will consider cases in which only
one formula ϕi is used to denote the goal within an RB.

A possible solution to the problem is a (possibly non-Markovian) policy ρ̄ :
(Q1 × . . .×Qm × S)∗ → A where the cumulative reward is maximized.
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4.2 Solution concept

Our solution is given by n policies ρagi
, one for each agent αi, that are individually

optimal concerning each agent’s goal, and that in the case of conflicts, they are always
resolved in favour of the agent who has a goal with higher priority (lower value of Pi).

To eliminate interference between agent policies, we define a new "no-interference"
reward function Nagi

for each agent. The Nagi
function is computed by applying, to the

original reward function Ragi
a modifier that depends on the trajectories generated by

agents with higher priority goals.
Each agent must satisfy its ϕi formula and must respect the priority value assigned

to this goal.

• If the agent αi has Pi = 0 (highest priority), then Nagi
equals the reward function

Ragi
.

• If the agent αi has Pi > 0, then Nagi
reward function is the sum of the reward

function Ragi
of the agent αi and of a modifier that depends on the trajectories

generated by optimal policies of agents αj for which Pj < Pi.

More formally

Nagi
= Ragi

+ f({τj |αj s.t. Pj < Pi}) (4.1)

Nagi
is defined on the basis of the policies obtained from the agents αj , who have a

higher priority Pj < Pi.
Note that, we admit non-deterministic behaviour during optimal policy execution.

However, we assume that the variability of the trajectories is limited so that it is possible
to define a modifier function f removing interference.

4.2.1 Formal solution

By using the no-interference reword functions Nagi
, previously defined instead of Ragi

,
we eliminate the interference among the m MDPs making them all independent of each
other. In this case, we can apply the method described in (De Giacomo et al., 2019)
incrementally and derive an optimal multi-agent behaviour, where multi-agent optimality
is defined in terms of the modifier function f .

Let’s solve the problem more formally:

We have a tuple S = 〈A,M,RB〉, with Magi
= 〈Si, Ai, T ragi

, Nagi
, γ〉 and RBi =

〈 L, (ϕi, ri, Pi)〉.
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• For each ϕi, compute the equivalent DFA Aϕi is (De Giacomo and Vardi, 2013).

• Apply RL on our MDP M q
agi

=
〈
Q1i × · · · ×Qmi × Si, Ai, T r′agi

, N ′agi

〉
– The Tr′agi

is not known

– The reward N ′agi
, is unknown to the agent αi, and is defined as follows:

N ′agi

(
q1i , . . . , qmi , si, ai, q

′
1i
, . . . , q′mi

, s′i

)
=

∑
j:q′

j∈Fj

rji +Nagi

(
si, ai, s

′
i

)

– The environment correctly progresses the qi states of the DFA Aϕi

By exploiting the theorem in (De Giacomo et al., 2019), our scenario S = 〈A,M,RB〉,
can be reduced to RL over extended MDPs and optimal policies ρnewagi

for M rb
agi

can be
learned by learning corresponding optimal policies for M q

agi
.

From the eecution of the optimal policy ρnewagi
, we get a trajectory τi that will be used

in the next iteration to calculate new no-interference reward Nagj
for agents with lower

priority goals (Pj > Pi).



40 4. Problems Definition

4.3 Algorithm

Now let’s define an algorithm we need to get the solution to our problem.

Algorithm 4.1 No-interference
1: A is a set of agents
2: Magi

= 〈Si, Ai, T ragi
, Ragi

, γ〉 each agent αi is modeled by the MDP model
3: RBi = 〈 L, (ϕi, ri, Pi)〉 is the Restraining Bolt
4: αi is the agent
5: Ragi

is the reward functions associated with the agent αi
6: L is the set of possible fluent configurations shared among all agents
7: ϕi is the formula ltlf/ldlf to be satisfied by the agent αi
8: ri is the reward associated with ϕi
9: Pi is a non-negative integers and is the priority associated with the agent αi

10: AP is the list of agents αi sorted by goal priorities (P0, . . . Pn−1)
11: for αi in AP do:
12: Nagi

← Ragi
+ f({τj |αj s.t. Pj < Pi})

13: ρagi
← RL solution ofMagi

= 〈Si, Ai, T ragi
, Nagi

, γ〉 (De Giacomo et al., 2019)
14: τi ← execution of policy ρagi

15: end for
16: return set of policies {ρagi

}

The No-interference reward function Nagi
is the sum between the reward function

associated with ϕi and of a modifier that depends on the trajectories generated by optimal
policies of agents αj .

4.4 Theoretical analysis

The function f is a domain-dependent function, which therefore cannot be explained in
this abstract and theoretical chapter. Our hypothesis in which f manages to isolate and
thus to determine independence from the rewards is true, then the solution we get is the
one we have previously described.

In the next section, we will show how our implementation of f will make the solution
of our case study optimal.

The algorithm defined in the previous section starts by iterating each αi agent
according to its priority. The agent with the highest priority P = 0 is always the first to
perform its task and the no-interference reward function Nagi

is always equal to Ragi
.
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Since α0 is the first agent to run, there is no τj interference. The agent with the highest
priority P = 0 is always the first to perform its task and the no-interference reward
function Nagi

is always equal to Ragi
.

Observing the algorithm in the previous section we can note that the reward function
Magi

is replaced by a no-interference reward Nagi
.

Magi
= 〈Si, Ai, T ragi

, Nagi
, γ〉

RB+
i = 〈 L, (ϕi, ri, Pi)〉

We eliminate the interferences between the m MDP making them all independent
from each other, it is possible to apply the algorithm of (De Giacomo et al., 2019) to
solve the problem and obtain the optimal policy ρagi

for each agent αi. By executing the
optimal policy ρagi

, we obtain the τi trajectory that we will use in the next iteration to
calculate our new no-interference reward Nagi

.
Note that the no-interference reward function Nagi

for each agent αi, which is equal
to the sum of the reward function Ragi

with τj of the agent αj , τi is generated from
execution of the optimal policy ρagi

returned from the algorithm of (De Giacomo et al.,
2019).

4.5 Case study

Our case study is an instance of the previously defined abstract problem. Let’s assume
we have a global clock that measures the time during the evolution of the scenario for
each agent αi, from 0 to T. Let’s consider a set of asynchronous goals, each agent does
not know where the other agents are at any given instant of time.

The scenario of our case study is a tuple defined as follows: A Scenario S =
〈A,M,RB〉. Where A is the set of αi modeled by the MDP, in our case each agent is a
UAV. RB is the set of Restraining Bolts, which define the behavior of the UAV in order
to reach the goal. The agent interacts with the W world through actions Ai.

• Each UAVi has a (ϕi, Pi) goal. Where ϕi is a ltlf/ldlf formula that specifies the
order in which each UAVi must visit hospitals in order to complete the mission. Pi
is a non-negative integer associated with the ϕi goal that indicates the priority of
each UAVi. The UAVi with the highest priority has priority Pi = 0, the one with
the lowest priority has priority Pi = n− 1.
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• There are five actions allowed for each agent αi. Ai ∈ [0, 4], where actions 0 to 3
correspond to a direction (up, down, left or right) and action number 4 corresponds
to the "Hovering / beep" state.

• In our case, the RBi of an agent αi gives a positive reward if the agent performs
the "Hovering/beep" action first on the cell from which the agent must take the
resource and then on the cell where the UAVi must release the resource.

• To find our no-interference reword we apply equation 4.1. In our case f has been
implemented by adding negative weights on the cells crossed by the trajectories
τj of the previous agents αj . In this way, the UAVi when it passes over a cell in
which the UAVj has already passed receives through the no-interference reward
function Nagi

a negative reward. This leads the agent UAVi to find an optimal
trajectory to reach his goal, considering the trajectories τj performed before him
by the UAVj having higher priority.

4.5.1 Reward values

In our case, each agent αi generates a trajectory that is not necessarily unique (because
the policy, in general, can be non-deterministic), which corresponds to the set of states
crossed during the execution of the optimal policy. For each agent, ρagi

is a set of cells
(x, y) that αi visited before reaching its goal.

The reward function computes a reward for each step t depending on the action done
and the state in which the agent is:

rt(st, at) =



10 if st = ϕi (agent reached the goal)

−1 if st = badBeepi (the agent makes a "beep"/"hovering")

−1 if st ∈ Nagi
(agent moved over previous paths)

−1/(width · height) off map (agent moved)

−0.1 if st 6= ϕi (agent has not yet reached the goal)
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Chapter 5

Implementation

In this chapter, we will describe the implementation of this thesis work. In particular,
the possible settings and the most important parts of the code.

As specified in the previous chapters 4.4, the problem defined above was implemented
as a reinforcement learning problem. The code was written in python and the OpenAI
Gym library was used to create the environment or it is compatible with other environ-
ments sharing a similar structure (same action space and state space) and with other RL
algorithms that follow Gym APIs.

The libraries used in addition to the OpenAI Gym toolkit are:

• OpenAI Gym;

• numpy;

• decimal;

• sklearn;

• matplotlib;

• mpl_toolkits;

• scipy;

• statistics;

• ffloat;

• pythomata;
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5.1 Environment setting

The code is easily extendable and it is possible to make different types of settings. It is
possible to set the number of hospitals in the scenario, the priority of each hospital in
the form of colour, the number of UAVs, the priority of each UAV based on the mission
it has to carry out, the number of obstacles in case you pass to the 3D environment,
whether the UAV has an unlimited battery or not. It is also possible to choose which
type of algorithm to use and implement new ones, the algorithms implemented at this
time are Q-learning and SARSA, however, the objectives of this thesis go beyond the
optimization of RL methods.

5.1.1 Q-Table Initialization

It is possible to initialize the Q-tables in different ways, in our environment it is possible
to use four different types of initializations when using Q-learning:

1. zero initialization;

2. random initialization;

3. maximum reward initialization;

4. prior initialization;

• The zero-initialization is the most common, it is possible to set all the value of
the q-tables to 0, in this way every all the state-action combinations are set to the
initial value 0. However, this setting could lead to stalemate. If a random step is
not provided, if this stalemate occurs the agent is led to always perform the same
sequence of actions.

• Another approach is to initialize the Randomly inizalization. In this case, always
assuming that no random steps are used, it is possible to avoid the ’local minima’
(i.e. a stuck sequence of actions), the training time could increase.

• Maximum Reward Initialization surely there will be no local minimums so the UAVs
will not get stuck in learning but it could lead to a very high training time. A value
much higher than the upper limit set for the reward is associated with each pair of
shares.

• prior initialization This implementation builds on previous knowledge and is useful
for roughly letting the UAVs know the location of the hospitals they need to reach.
The assumption is that the map can be divided into six sectors as "good" or "bad".
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5.2 Priority management

The management of priorities is an important part of the code, as already mentioned in
section 4.5, each goal has an associated priority and it is possible to associate the goal
and priority to a specific UAV.

5.2.1 UAVs priority

The UAVs are sorted by priority, the highest priority UAV being the first to iterate. By
executing the newly obtained policy, a trajectory is generated and stored in an array.
The trajectory is composed of points (x, y) in the 2D case. When the second iteration
begins, a no-interference reward is created which contains the reward function of the
UAV that is performing its mission plus the negative reward weights associated with each
point (x, y) that the UAV0 has passed through. In this way, the UAV1 takes a negative
reward every time it passes over the cells inside this array. This procedure occurs at each
iteration, so each UAV always tries not to pass over a point (x, y) where another UAV
has already passed. With this method we prevent UAVs from interfering with each other,
thus ensuring safety.

5.2.2 Restraining Bolt

The Restraining Bolt is another important element for priority management. Here is a
piece of implementation:

Listing 5.1. Restraining Bolt.

 @staticmethod
 def extract_UAV_fluents(obs) -> PLInterpretation:
 fluents = set()
 if (UNLIMITED_BATTERY == True):
 beep = obs[0][’beep’]
 color_idx = int(obs[0][’color’])
 if ((0 < color_idx <= len(RestrainingBolt.get_colors())) and beep):
 color_string = RestrainingBolt.get_colors()[color_idx - 1]
 fluents.add(color_string)

 elif ((color_idx == 0) and beep):
 fluents.add("bad_beep")
 result = PLInterpretation(fluents)
 return result
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In the first section of code with the function extract_UAV_fluents we get the fluents
of the hospitals which we will then need to build our automata. The condition is true in
the second "if" when the agent hovering/beep on a colour that is not an empty cell. If the
colour is 0 (ie the cell has no colour) when the UAV does hovering/beep, a ”bad_beep”
is added to the set of fluents.

Listing 5.2. Restraining Bolt.

 def step_agent(self, agent, action):
 """Do a step in the Gym environment."""
 obs, reward, done, info = self.env.step_agent(agent, action)
 if (UNLIMITED_BATTERY == True):
 color_idx = obs[2]


 action = [action]


 next_automata_states = [tg.step(obs_dict, action)
 for tg in self.temp_goals]


 temp_goal_rewards = [
 tg.observe_reward(is_terminal_state=done)
 for tg in self.temp_goals
 ]
 total_goal_rewards = sum(temp_goal_rewards)


 if any(r != 0.0 for r in temp_goal_rewards):
 logger.debug("No-zero␣goal␣rewards:{}".format(temp_goal_rewards))


 obs_prime = (obs_dict, next_automata_states)
 reward_prime = reward + total_goal_rewards


 return obs_prime, reward_prime, done, info

In the second section of code, we can see how the step_agent function implemented
inside wrapper.py communicates both with the agent and with the Restraining Bolt.
The ”env.step_agent” function extracts the observations, the reward obtained by the
agent and the ”done” at each iteration. The reward accumulated by the agent during
the iteration is added to the possible reward given by the Reistrainig Bolt, which in our
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case is 10 when the UAV respects the ldlf formula, so when the UAV beeps/hovering

on the right coloured hospitals order.
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Chapter 6

Results

In this chapter, we show and illustrate the empirical results obtained by our framework.
The experiments focus on the possible benefits obtained from the use of our algorithm
for managing the priorities of 2 or more agents.

6.1 Evaluation Criteria

The Reinforcement Learning algorithm used to carry out the experiments and generate
the optimal policies for each agent is SARSA. The results are compared through graphs,
which show the reward function behaviour when increasing the number of episodes and
the number of steps required in each episode. By carrying out the experiments, we obtain
excellent policies that allow us to generate trajectories, which we can view through gifs or
images. Viewing the trajectories makes us better understand how our algorithm resolves
the conflicts present between the UAVs, showing us how each agent first reaches the
hospital that sends the resource and then the recipient hospital.

The total reward plot highlights how many episodes are necessary to complete the
objective with the lowest possible penalty. In our case study, reach the hospitals in the
shortest possible time respecting the ltlf/ldlf formulas associated with the missions
and avoid the trajectories of the UAV with higher priority. Steps per episode instead can
provide a measure of the time required from the agent to reach the goal in the specific
step. Lengths plot shows us how many episodes are needed to minimize the actions that
each agent takes to complete the goal.
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6.2 Experiments

The experiments conducted are three, each consisting of a learning phase and a test
phase. Each UAV starts from a different position and at each iteration receives a negative
reward of (-0.01) to entice the agent to finish the mission in the shortest possible time.

Parameters Values

Number of episodes 1000
Number of iterations 50
Number of UAVs 3

Number of Restraining Bolts 3
Number of fluents x Restraining Bolts 2

Number of priority ** 3
Discount γ 0.99

Learning Rate α 0.1
Epsilon ε 0.1

Unlimited Battery True

** Only by using the no-interference reward, a
priority assigned to each agent.

Table 6.1. Environment parameters.

As we can see in table 6.1 we have associated a Restraining Bolt with each agent,
each RB has a ldlf formula. Each ldlf formula specifies how many fluent our agent
must visit before being satisfied, in our case each UAV must visit two hospitals, but we
can add more fluents to the formula to specify more goals.

The three ldlf formulas used to specify the goal ϕi of our agents αi are:

• UAV1: <(!yellow & !orange)*;yellow;(!yellow & !orange)*;orange>tt

• UAV2: <(!green & !darkGreen)*;green;(!green & !darkGreen)*;darkGreen>tt

• UAV3: <(!blue & !darkBlue)*;blue;(!blue & !darkBlue)*;darkBlue>tt

We assigned a priority to each agent, the UAV with highest priority P = 0 is UAV1.
UAV2 and UAV3 have P = 1 and P = 2 respectively.
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6.2.1 Case I & II - with and without priority

In image 6.1, case in which the no-interference reward is not applied, we see how the
UAV2 (orange colour trajectory) does not respect the priorities to reach the second
objective, thus intersecting the trajectory of the UAV1 (purple colour trajectory) with
the highest priority. In this case, there is a conflict that must be managed to avoid the
collision.

Figure 6.1. Experiment 1. Without priority

In figure 6.2 the UAV1 (purple colour trajectory) with the highest priority reached
the first and second hospital in the shortest possible time, making Hoverin / beep on
both. The UAV2 (orange colour trajectory) is the second starting as established, can see
that the UAV2 reaches its goal without ever intersecting the trajectory of the UAV1, in
this case, the risk of collision between the UAVs is 0, have thus maximized safety.

Note that we have assumed that the goals are asynchronous, so each UAV can decide
to execute its mission at any time. Each UAV is not aware of the location of the other
UAVs at any given instant of time.
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Figure 6.2. Experiment 2. With priority
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6.2.2 Case III & IV - with and without priority

In figure 6.3 and 6.4, we can see that we have added two more hospitals and another
drone (grey colour trajectory). The latter added UAV has the lowest priority in the
scenario. It is easy to see in image 6.2, in this case, have two conflicts. One conflict is
between UAV1 and UAV2, the other is between UAV2 and UAV3.

Figure 6.3. Experiment 3. Without priority

In case IV, figure 6.4, we apply the no-interference reward to enforce priorities and
resolve conflicts between UAVs. The benefits are obvious, in this case, the highest priority
UAV1 reaches its goal first of all in the shortest possible time. UAV2 no longer intersects
the trajectory of UAV1, but goes around it, thus resolving the conflict. The UAV3 does
not disturb either the trajectory of the UAV1 or that of the UAV2, completing the
mission safely. All agents carried out their mission without interference with each other,
achieving our main goal, maximizing safety.
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Figure 6.4. Experiment 4. With priority
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6.2.3 Case I & II - Performance Comparison

Figure 6.5 includes three graphs regarding the UAV1. These three graphs are the same
for both the case with priority and the case without priority UAV1 is the first to start so
there are no conflicts.

(a) UAV1 - averange rewards. (b) UAV1 - total rewards.

(c) UAV1 - number of steps per episode.

Figure 6.5. CASE I & II.
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(a) Case I: UAV2 - averange rewards. (b) Case II: UAV2 - averange rewards.

(a) Case I: UAV2 - total rewards. (b) Case II: UAV2 - total rewards.

(a) Case I: UAV2 - number of steps per episode.(b) Case II: UAV1 - number of steps per episode.
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6.2.4 Case III & IV - Performance Comparison

The graphs show us that the UAV3 takes longer to find its optimal policy, as we have
already described, to maximize the reward the UAV3 undertakes not to pass over the
cells in which the other UAVs have passed.

(a) Case III: UAV3 - averange rewards. (b) Case IV: UAV3 - averange rewards.

(a) Case III: UAV3 - total rewards. (b) Case IV: UAV3 - total rewards.
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(a) Case III: UAV3 - number of steps per episode.(b) Case IV: UAV3 - number of steps per episode.



59

Chapter 7

Conclusion and Futures Works

This thesis work could be a new way to generate off-line trajectories free of conflicts or
in any case with an extremely low potential for conflict. The hospital scenario is just
one example of how this system could be used to generate priority-based trajectories.
This study allows you to manage two types of priorities. The priorities managed by the
Restraining Bolt which, thanks to a ltlf/ldlf formula, allows to establish in which order
the UAV must visit the hospitals, therefore from whom to take the resource and to whom
to deliver it. The priorities managed by the no-interference reward function which allows
eliminating the disturbances between the policies of each UAV, in this case between the
trajectories generated by the execution of optimal policies. In the case study, using the
independent learning technique, we demonstrate that we obtain excellent policies that
respect the concept of priority. Experiments result empirically demonstrated that all the
conflicts present in cases I and III were resolved in cases II and IV, at the expense of a
negligible increase in the training time. The no-interference reward function in the recent
future could be deepened and submitted to a scientific article. A possible future work
is to use the high-level generated trajectories of our work to generate real trajectories.
Also, it is possible to consider the case where the goals are not asynchronous, so each
UAV could know where another UAV is at a given instant of time.
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